分析 设集合S中第k个元素,则其值为k-1.然后根据数列求和进行解答.
解答 解:设集合中第k个元素,则其值为k-1.
|(k-1)-k|+|(k-1)-(k+1)|+…+|(k-1)-n|
=1+2+…+(n+1-k)
=$\frac{(n+1-k)(n+1-k+1)}{2}$
Tn=$\frac{1}{2}$n2•n+$\frac{3}{2}$n•n+n-(1+2+…+n)n-$\frac{3}{2}$(1+2+…+n)+$\frac{1}{2}$(12+22+…+n2)=$\frac{n(n+1)(n+2)}{6}=\frac{1}{6}{n^3}+\frac{1}{2}{n^2}+\frac{1}{3}n$.
故答案是:$\frac{1}{6}$n3+$\frac{1}{2}$n2+$\frac{1}{3}$n.
点评 本题考查了等差数列,数列求和,难度较大.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (1,2) | D. | (2,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com