精英家教网 > 高中数学 > 题目详情

某校的研究性学习小组为了研究高中学生的身体发育状况,在该校随机抽出120名17至18周岁的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人数各占一半
(1)根据以上数据建立一个列联表:

 
偏重
不偏重
合计
偏高
 
 
 
不偏高
 
 
 
合计
 
 
 
(2)请问该校17至18周岁的男生身高与体重是否有关?


(1)

 
偏重
不偏重
合计
偏高
  40
       30
   70
不偏高
  20
       30
   50
合计
  60
   60
   120
 (2)在犯错误的概率不超过0.10的前提下,认为该校17至18周岁的男生身高与体重有关

解析试题分析:解:(1)列联表如下:

 
偏重
不偏重
合计
偏高
  40
       30
   70
不偏高
  20
       30
   50
合计
  60
   60
   120
……6分
(2)根据列联表中的数据得到的观测值为
,       ………10分
,因为     11分
所以,在犯错误的概率不超过0.10的前提下,认为该校17至18周岁的男生身高与体重有关      12分
考点:列联表以及独立性检验的运用
点评:解决的关键是通过实际问题抽象出分类变量,然后结合公式来求解犯错率,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别
频数
频率
[145.5,149.5)
1
0.02
[149.5,153.5)
4
0.08
[153.5,157.5)
20
0.40
[157.5,161.5)
15
0.30
[161.5,165.5)
8
0.16
[165.5,169.5)
m
n
合 计
M
N
(1)求出表中所表示的数;
(2)画出频率分布直方图;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背。为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验。
两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点)

(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;
(2)从乙组准确回忆因结束在[12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量X,求X分布列及数学期望;
(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好? 计算并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解目前老年人居家养老还是在敬老院养老的意向,共调查了50名老年人,其中男性明确表示去敬老院养老的有5人,女性明确表示居家养老的有10人,已知在全部50人中随机地抽取1人明确表示居家养老的概率为
(1)请根据上述数据建立一个2×2列联表;
(2)居家养老是否与性别有关?请说明理由。
参考公式:
参考数据:


0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

调查某桑场采桑员和辅助工桑毛虫皮炎发病情况结果如下表:利用2×2列联表的独立性检验估计“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是多少?

 
采桑
不采桑
合计
患者人数
18
12
 
健康人数
5
78
 
合计
 
 
 

P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:


文艺节目
新闻节目
总计
20~40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
(1) 由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应抽取几名?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
某车间为了规定工时定额,需要确定加共某零件所花费的时间,为此作了四次实验,得到的数据如下:

零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一次考试中,五名学生的数学、物理成绩如下表所示:

学生
A1
A2
A3
A4
A5
数学(x分
89
91
93
95
97
物理(y分)
87
89
89
92
93
 
(1)请在图的直角坐标系中作出这些数据的散点图,并求出这些数据的同归方程;

(2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):
                       男             女
                               15    7  7  8  9  9  9
9  8   16    0  0  1  2  4  5  8  9
8  6  5  0   17    2  5  6
7  4  2  1   18    0 
1  0   19
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

同步练习册答案