精英家教网 > 高中数学 > 题目详情

【题目】若椭圆和椭圆的焦点相同且.给出如下四个结论:

①椭圆与椭圆一定没有公共点 ②

其中所有正确结论的序号是( )

A. ①②③ B. ①③④ C. ①②④ D. ②③④

【答案】B

【解析】由题意可得两椭圆的焦点均在轴上,且,即有正确;由可得由椭圆的对称性可得椭圆和椭圆一定没有公共点,故正确;由题意可得即为,则即有,则可得即有正确正确结论的序号是①③④故选B.

方法点睛】本题主要通过对多个命题真假的判断,主要综合考查椭圆的方程与几何性质属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题尽量挖掘出题目中的隐含条件,另外要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,△ABC内接于圆O,D是 的中点,∠BAC的平分线分别交BC和圆O于点E,F.

(1)求证:BF是△ABE外接圆的切线;
(2)若AB=3,AC=2,求DB2﹣DA2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=是定义在[-l,1]上的奇函数,且f()=

(1)确定函数f(x)的解析式;

(2)判断并用定义证明f(x)(-1,1)上的单调性;

(3)f(1-3m)+f(1+m)≥0,求实数m的所有可能的取值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.

(1)求证:AD⊥PB;

(2)已知点M是线段PC上,MC=λPM,且PA平面MQB,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在x=1处取得极值.
(1)求函数y=f(x)的单调区间;
(2)当x∈[1,+∞)时,f(x)≥ 恒成立,求实数m的取值范围;
(3)当n∈N* , n≥2时,求证:nf(n)<2+ + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=16BC=10AA1=8,点EF分别在A1B1D1C1上,A1E=D1F=4,过点EF的平面α与此长方体的面相交,交线围成一个正方形.

1)在图中画出这个正方形(不必说明画法和理由);

2)求直线AF与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数.

(Ⅰ)求的值;

(Ⅱ)判断在定义域上的单调性并加以证明;

(Ⅲ)若对于任意的,不等式恒成立, 求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半径为2的球O内有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该四棱柱的侧面积之差是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中不正确的是( )

A. 对于线性回归方程,直线必经过点

B. 茎叶图的优点在于它可以保存原始数据,并且可以随时记录

C. 将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变

D. 掷一枚均匀硬币出现正面向上的概率是,那么一枚硬币投掷2次一定出现正面

查看答案和解析>>

同步练习册答案