精英家教网 > 高中数学 > 题目详情
如图,在中,,延长,连接,若,且,则________.

试题分析:过点C作CE∥AB,交BD于E,如图所示,
设AC=x,∵∠ABC=90,AB=1,AC=x,
∴BC=  ,∴CE=BC•tan30°=,∵CE∥AB,
∴△DCE∽△DAB,∴DC:AD=CE:AB,∴(1+x)××
化简得(x+2)(-2)=0,解关于x的方程得x= (负数舍去),
∴AC= .
点评:本题考查了勾股定理、特殊三角函数值、平行线分线段成比例定理的推论、相似三角形的判定和性质、解无理方程,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

表示三条不同的直线,表示平面,给出下列命题:
①若,则;     ②若,则
③若,则;   ④若,则
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同直线,是两个不同的平面,给出下列四个命题
①若                 ②
③若     ④若
其中正确的命题是              (       )
A.①B.②C.③④D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是半圆的直径,是半圆上除外的一个动点,垂直于半圆所在的平面,

⑴证明:平面平面
⑵当三棱锥体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四棱锥中,侧棱都相等,底面是边长为的正方形,底面中心为,以为直径的球经过侧棱中点,则该球的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中假命题是
A.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
B.垂直于同一条直线的两条直线相互垂直
C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直
D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面分别为的中点.

(I)证明:平面
(II)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分别是PC,PD,BC的中点.

(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下图所示,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AB=5,AA1=4,点DAB的中点.

(1)求证:ACBC1
(2)求证:AC1平面CDB1
(3)求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

同步练习册答案