精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为,若曲线与曲线关于直线对称.

1)求曲线的直角坐标方程;

2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

【答案】1;(2.

【解析】

1)求出曲线的直角坐标方程,根据对称性即可求得曲线的直角坐标方程;

2)分别写出两个曲线的极坐标方程,求出直线与曲线的交点的极坐标,根据几何意义即可求解.

1)曲线的参数方程为

化为直角坐标方程:,即圆心坐标,半径为2的圆,

曲线与曲线关于直线对称,曲线也是半径为2的圆,设圆心坐标

,解得,所以

曲线的直角坐标方程

2)曲线是圆心坐标,半径为2的圆,其极坐标方程为:

曲线是圆心坐标,半径为2的圆,极坐标方程为:

射线的异于极点的交点为,与的异于极点的交点为

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点O为坐标原点,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,离心率为,点I,J分别是椭圆C的右顶点、上顶点,IOJ的边IJ上的中线长为

(1)求椭圆C的标准方程;

(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

试销价

9

11

10

12

13

14

产品销量

40

32

29

35

44

(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量

(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.

参考公式:

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高血压高血糖和高血脂统称三高”.如图是西南某地区从2010年至2016年患三高人数y(单位:千人)的折线图.

1)由折线图看出,可用线性回归模型拟合的关系,请求出相关系数(精确到0.01)并加以说明;

2)建立关于的回归方程,预测2018年该地区患三高的人数.

参考数据:.

参考公式:相关系数

回归方程 中:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

若曲线处的切线斜率为-2,求该切线的方程

求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】雅山中学采取分层抽样的方法从应届高三学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.




文科

2

5

理科

10

3

)若在该样本中从报考文科的学生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;

)用假设检验的方法分析有多大的把握认为雅山中学的高三学生选报文理科与性别有关?

参考公式和数据:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.07

2.71

3.84

5.02

6.64

7.88

10.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种特别列车,沿途共有个车站(包括起点与终点),因安全需要,规定在同一车站上车的旅客不能在同一车站下车。为了保证上车的旅客都有座位(每位旅客一个座位),则列车至少要安排()个座位。

A. B. 100 C. 110 D. 120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,a1=2,且a1a2a3-2成等差数列.

1)求数列{an}的通项公式;

2)若数列{bn}满足:,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)①若直线的图象相切, 求实数的值;

②令函数,求函数在区间上的最大值.

(2)已知不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案