精英家教网 > 高中数学 > 题目详情
已知平行六面体ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=90°,∠BAA′=∠DAA′=60°,则平行六面体的体积等于(  )
分析:由题意画出几何体的图形,设A'在底面上的射影为H,根据cos∠A'AB=cos∠A'AC•cos∠CAB求出∠A'AC,根据解三角形AA‘H求出高A’H,最后根据体积公式求解即可.
解答:解:由题意几何体的图形如图,设A'在底面上的射影为H,
∵AB=4,AD=3,∠BAD=90°
∴AC=5,因为∠BAD=90°,∠BAA′=∠DAA′=60°,
根据cos∠A′AB=cos∠A′AC•cos∠CAB
1
2
=cos∠A′AC•
2
2

∴∠A′AC=45°,在△AA'H中,
A'H=AA'sin45°=5×
2
2
=
5
2
2

则平行六面体的体积V=Sh=4×3×
5
2
2
=30
2

故选C.
点评:本题主要考查了棱柱、棱锥、棱台的体积、解三角形的应用,同时考查了空间想象能力,计算推理的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1
(I)若G为△ABC的重心,
A1M
=3
MG
,设
AB
=a,
AD
=b,
AA1
=c
,用向量a、b、c表示向量
A1M

(II)若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD中点,AC1∩BD1=O,求证;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平行六面体ABCD-A1B1C1D1
(I)若G为△ABC的重心,数学公式,设数学公式,用向量a、b、c表示向量数学公式
(II)若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD中点,AC1∩BD1=O,求证;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省芜湖一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

同步练习册答案