精英家教网 > 高中数学 > 题目详情
下列命题:①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;②y=-
1
x
在定义域内是增函数;③函数f(x)=
1-x2
|x+1|-1
图象关于原点对称;④如果关于实数x的方程ax2+
1
x
=3x
的所有解中,正数解仅有一个,那么实数a的取值范围是a≤0;  其中正确的序号是______.
①若区间D内任意实数x都有f(x+1)>f(x),但不一定满足增函数的定义,则y=f(x)在D上是增函数错误;
y=-
1
x
在(-∞,0)和(0,+∞)上均为增函数,但在其定义域内不是增函数,故②错误;
③∵函数f(x)=
1-x2
|x+1|-1
为奇函数,∴函数f(x)=
1-x2
|x+1|-1
的图象关于原点对称,故③正确;
④将方程ax2+
1
x
=3x
改写为
1
x
=3x-ax2
,令 y1=
1
x
,y2=3x-ax2
“关于实数x的方ax2+
1
x
=3x
的所有解中,仅有一个正数解”等价于“双曲线y1=
1
x
与y2=3x-ax2的图象在y轴右侧只有一个交点”.
双曲线y1=
1
x
在第一、三象限内.
当a>0时,抛物线y2=3x-ax2的开口向下且过原点(0,0)及x轴正半轴上的点 (3a,0),研究知,当a<2时,双曲线y1=
1
x
与抛物线y2=3x-ax2在第一象限内有两个交点,当a>2时,两曲线在第一象限无交点,当a=2进,两曲线仅有一个交点,故a=2符合题意.
当a=0时,y2=3x-ax2为直线,此时,双曲线y1=
1
x
与直线y2=3x在第一象限内只有一个交点,故a=0符合题意.
当a<0时,抛物线y2=3x-ax2的开口向上且过原点(0,0)及x轴负半轴上的点 (3a,0),此时,双曲线 y1=
1
x
与抛物线y2=3x-ax2在第一象限内仅有一个交点,故a<0符合题意.
综上所述,实数a的取值范围为(-∞,0]∪{2}.,故④错误;
故答案为:③
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题:
①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;
y=-
1
x
在定义域内是增函数;
③函数f(x)=
1-x2
|x+1|-1
图象关于原点对称;
④既是奇函数又是偶函数的函数一定是f(x)=0 (x∈R);  
其中正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;②y=-
1
x
在定义域内是增函数;③函数f(x)=
1-x2
|x+1|-1
图象关于原点对称;④如果关于实数x的方程ax2+
1
x
=3x
的所有解中,正数解仅有一个,那么实数a的取值范围是a≤0;  其中正确的序号是

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省部分重点中学高三(上)期中联考数学试卷(文科)(解析版) 题型:填空题

下列命题:
①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;
在定义域内是增函数;
③函数图象关于原点对称;
④既是奇函数又是偶函数的函数一定是f(x)=0 (x∈R);  
其中正确的序号是   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省九江市高三七校联考数学文卷 题型:选择题

下列命题:①若区间D内存在实数x使得f(x+1)>f(x),则y=f(x)在D上是增函数;

在定义域内是增函数;③函数图象关于原点对称;④既是奇函数又是偶函数的函数一定是=0 ; ⑤函数yf(x+2)图象与函数yf(2-x)图象关于直线x=2对称;其中正确命题的个数为:(    )

A. 0个       B. 1个      C. 2个      D. 3个

 

 

查看答案和解析>>

同步练习册答案