精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=cos2ωx-$\sqrt{3}$sinωx•cosωx-$\frac{1}{2}$(0<ω<4),且f($\frac{π}{3}$)=-1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若在(-$\frac{π}{6}$,$\frac{2π}{3}$)内,函数y=f(x)+m有两个零点,求实数m的取值范围.

分析 (Ⅰ)由三角函数公式化简可得f(x)=cos(2ωx+$\frac{π}{3}$),由f($\frac{π}{3}$)=-1可得ω值,可得解析式;
(Ⅱ)由(Ⅰ)可作出函数f(x)=cos(2x+$\frac{π}{3}$)在(-$\frac{π}{6}$,$\frac{2π}{3}$)的图象,数形结合可得.

解答 解:(Ⅰ)由三角函数公式化简可得
f(x)=cos2ωx-$\sqrt{3}$sinωx•cosωx-$\frac{1}{2}$
=$\frac{1}{2}$(1+cos2ωx)-$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$
=$\frac{1}{2}$cos2ωx-$\frac{\sqrt{3}}{2}$sin2ωx
=cos(2ωx+$\frac{π}{3}$),
由f($\frac{π}{3}$)=cos($\frac{2π}{3}$ω+$\frac{π}{3}$)=-1
可得$\frac{2π}{3}$ω+$\frac{π}{3}$=2kπ+π,
∴ω=3k+1,k∈Z,
∵0<ω<4,∴ω=1
∴f(x)=cos(2x+$\frac{π}{3}$);
(Ⅱ)由(Ⅰ)可作出函数f(x)=cos(2x+$\frac{π}{3}$)在(-$\frac{π}{6}$,$\frac{2π}{3}$)的图象,
函数y=f(x)+m有两个零点,只需f(x)图象与y=-m图象有两个交点,
由图象可知-1<-m<$\frac{1}{2}$,∴实数m的取值范围为:(-$\frac{1}{2}$,1)

点评 本题考查三角恒等变换,涉及三角函数的图象和性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lg(1+x)-lg(1-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由;
(3)若f(x)>0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=$lo{g}_{\frac{1}{2}}$(2-x2)的定义域、值域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.求证:等腰梯形的对角线相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(2)当函数f(x)的图象过点(-1,0),且函数f(x)在区间[-1,+∞)上单调递增,求实数a的取值范围;
(3)若F(x)=$\left\{{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}}$,当mn<0,m+n>0,a>0且函数f(x)为偶函数时,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题:
①函数$f(x)=4cos(2x+\frac{π}{3})$的一个对称中心为$(-\frac{5}{12}π,0)$
②已知:f(x)=min{sinx,cosx},则f(x)的值域为$[-1,\frac{{\sqrt{2}}}{2}]$
③若α,β均为第一象限角,且α>β,则sinα>sinβ
④若${(\frac{1}{2})^a}={(\frac{1}{3})^b}$,则a>b>0
⑤定义域为R的函数y=f(x)满足f(-x)+f(x+2)=2,则其图象关于点(1,1)对称
其中正确命题的序号是①②⑤(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx+2$\sqrt{3}$cos2$\frac{x}{2}$,设a=f($\frac{π}{7}$),b=f($\frac{π}{6}$),c=f($\frac{π}{3}$),则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=6+loga(x-4)(a>0,a≠1)的图象恒过点(5,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-cosx,$x∈[-\frac{π}{2},\;\frac{π}{2}]$,则满足$f({x_0})<f(\frac{π}{3})$的x0的取值范围是(-$\frac{π}{3}$,$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案