精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|x-m|+|x+$\frac{4}{m}$|(m>0).
(Ⅰ)证明:f(x)≥4;
(Ⅱ)若f(2)<5,求m的取值范围.

分析 (Ⅰ)由条件利用绝对值的意义证得不等式f(x)≥4成立.
(Ⅱ)由f(2)<5可得|2-m|+|2+$\frac{4}{m}$|<5,即 $\left\{\begin{array}{l}{0<m<2}\\{2-m+2+\frac{4}{m}<5}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{m≥2}\\{m-2+2+\frac{4}{m}<5}\end{array}\right.$②.分别求得①②的解集,再取并集,即得所求.

解答 (Ⅰ)证明:∵函数f(x)=|x-m|+|x+$\frac{4}{m}$|≥|x+$\frac{4}{m}$-(x-m)|=|$\frac{4}{m}$+m|=$\frac{4}{m}$+m≥2$\sqrt{4}$=4,
当且即当$\frac{4}{m}$=m,即m=2时,取等号,∴f(x)≥4.
(Ⅱ)∵f(2)<5,即|2-m|+|2+$\frac{4}{m}$|<5,$\left\{\begin{array}{l}{0<m<2}\\{2-m+2+\frac{4}{m}<5}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{m≥2}\\{m-2+2+\frac{4}{m}<5}\end{array}\right.$②.
解①求得 $\frac{\sqrt{17}-1}{2}$<m<2;解②求得2≤m<4,综上可得,不等式的解集为{m|$\frac{\sqrt{17}-1}{2}$<m<4}.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知θ为小于360°的正角,这个角的4倍角与这个角的终边关于x轴对称,那么θ=72°或144°或216°或288°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“a=2”是“复数z=$\frac{a+2i}{1-i}$的对应点落在复平面的虚轴上”的 (  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,一长为$\sqrt{3}$dm,宽为1dm的长方形木块在桌面上作无滑动翻滚,翻滚到第三面时被一小木板挡住,使木块底面与桌面成30°的角,则点A走过的弧的总长为$\frac{(9+2\sqrt{3})π}{6}$dm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z的共扼复数为$\overline{z}$,若z+$\overline{z}$=4,z•$\overline{z}$=5,且复数z在复平面上表示的点在第四象限,则z=(  )
A.2一$\sqrt{21}$iB.$\sqrt{21}$一2iC.1一2iD.2一i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知复数$z=\frac{3+i}{2-i}$,z1=2+mi.
(1)若|z+z1|=5,求实数m的值;
(2)若复数az+2i在复平面上对应的点在第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图为某商场一天营业额的扇形统计图,根据统计图你能得到服装鞋帽和百货日杂共售出29000元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-2ax+b,(a≠0),x∈[-2,2],若f(x)max=9,f(x)min=-9,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\sqrt{3}sin(ωx+φ)(ω>0,-\frac{π}{2}≤φ<\frac{π}{2})$的图象关于直线$x=\frac{π}{3}$对称,且图象上相邻两个最高点的距离为π.
(1)求ω和φ的值;
(2)当$x∈[0,\frac{π}{2}]$时,求函数y=f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案