精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+1x+2
,其中a∈R
(1)当a=1时,求曲线y=f(x)在点P(2,f(2))处的切线方程;
(2)若函数f(x)在区间(-2,+∞)为增函数,求a的取值范围.
分析:(1)先利用导数的运算性质计算函数f(x)的导函数f′(x),再利用导数的几何意义,计算切线斜率,最后由点斜式写出切线方程即可;
(2)先将函数f(x)在区间(-2,+∞)为增函数问题转化为导函数f′(x)≥0在区间(-2,+∞)上恒成立但不能恒等于0问题,解这个不等式恒成立问题即可得a的取值范围
解答:解:(1)当a=1时,f(x)=
x+1
x+2

f′(x)=
x+2-x-1
(x+2)2
=
1
(x+2)2

∴f′(2)=
1
16
,f(2)=
3
4

∴曲线y=f(x)在点P(2,f(2))处的切线方程为y-
3
4
=
1
16
(x-2)
即x-16y+10=0
(2)f′(x)=
a(x+2)-(ax+1)
(x+2)2
=
2a-1
(x+2)2

∵函数f(x)在区间(-2,+∞)为增函数
∴f′(x)≥0在区间(-2,+∞)上恒成立但不能恒等于0
2a-1
(x+2)2
>0在区间(-2,+∞)上恒成立
只需2×a-1>0即可
∴a>
1
2
点评:本题主要考查了导数的几何意义和导数在函数单调性中的应用,导数的四则运算,不等式恒成立问题的解法,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案