精英家教网 > 高中数学 > 题目详情
函数y=
2cosx+1
的定义域是
 
分析:直接利用无理式的范围,推出csx的不等式,解三角不等式即可.
解答:解:由2cosx+1≥0得cosx≥-
1
2

2kπ-
3
≤x≤2kπ+
3
,k∈Z.
故答案为:[2kπ-
3
,2kπ+
3
](k∈Z).
点评:本题考查函数的定义域,三角不等式(利用三角函数的性质)的解法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一函数y=f(x)图象沿向量
a
=(
π
3
,2)
平移后,得到函数y=2cosx+1的图象,则y=f(x)在[0,π]上的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2cosx(x∈R)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2cosx(
3
cosx-sinx)-
3
-2
的图象F按向量
a
平移到F′,F′的函数解析式为y=f(x),当y=f(x),为奇函数时,向量
a
可以等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)给出下列四个命题:
①命题:“设a,b∈R,若ab=0,则a=0或b=0”的否命题是“设a,b∈R,若ab≠0,则a≠0且b≠0”; 
②将函数y=
2
sin(2x+
π
4
)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移
π
4
个单位长度,得到函数y=
2
cosx的图象; 
③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1); 
④函数f(x)=ex-x-1(x∈R)有两个零点.
其中所有真命题的序号是
①③
①③

查看答案和解析>>

同步练习册答案