【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛另一个人当裁判,设每周比赛结束时,负的一方在下一局当裁判,假设每局比赛中甲胜乙的概率为,甲胜丙,乙胜丙的概率都是,各局的比赛相互独立,第一局甲当裁判.
(1)求第三局甲当裁判的概率;
(2)记前四次中乙当裁判的次数为,求的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(1)求y关于t的回归方程 .
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程 中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点, 的四个顶点构成的四边形面积为.
(1)求椭圆的方程;
(2)在椭圆上是否存在相异两点,使其满足:①直线与直线的斜率互为相反数;②线段的中点在轴上,若存在,求出的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx,g(x)=2x﹣1.
(1)当a=1时,若函数f(x)的图象恒在函数g(x)的图象上方,试求实数b 的取值范围;
(2)若y=f(x)对任意的x∈R均有f(x﹣2)=f(﹣x)成立,且f(x)的图象经过 点A(1, ).
①求函数y=f(x)的解析式;
②若对任意x<﹣3,都有2k <g(x)成立,试求实数k的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)过点(1, ),离心率为 ,过椭圆右顶点A的两条斜率乘积为﹣ 的直线分别交椭圆C于M,N两点.
(1)求椭圆C的标准方程;
(2)直线MN是否过定点D?若过定点D,求出点D的坐标;若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= + .
(1)求函数f(x)的定义域和值域;
(2)设F(x)= [f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若﹣m2+2tm+ ≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)在犯错误的概率不超过0.10的前提下,认为休闲方式与性别是否有关?
参考数据:独立性检验临界值表
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= ,n=a+b+c+d.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com