精英家教网 > 高中数学 > 题目详情
已知B、C是两个定点,|BC|=6,且△ABC的周长为16.
(1)求三角形顶点A的轨迹S的方程;
(2)设过点B与BC垂直的直线l交轨迹S于D、E两点,求线段DE的长度.
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)取BC所在直线为x轴,BC中点为原点,建立如图所示坐标系,由题意可得AB+AC=10>BC,故顶点A的轨迹是以B、C为焦点的椭圆,除去与x轴的交点,利用椭圆的定义和简单性质求出a、b 的值,即得顶点A的轨迹方程.
(2)求出D、E的纵坐标,即可求线段DE的长度.
解答: 解:(1)取BC所在直线为x轴,BC中点为原点,建立如图所示坐标系,
∵|BC|=6,且△ABC的周长等于16,
∴AB+AC=10>BC,故顶点A的轨迹是以B、C为焦点的椭圆,除去与x轴的交点,
∴2a=10,c=3,
∴b=4,故顶点A的轨迹方程为
x2
25
+
y2
16
=1
(y≠0).
(2)由题意可知:B点坐标为(3,0)或(-3,0),则直线l的方程为x=±3,代入点A的轨迹方程,
得y=±
16
5
,∴|DE|=|yD-yE|=
32
5
点评:本题考查椭圆的定义、标准方程,以及简单性质的应用,注意轨迹方程中y≠0,这是解题的易错点.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象连续不断,若存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意的实数x成立,则称f(x)是回旋函数,其回旋值为t.给出下列四个命题:
①函数f(x)=2为回旋函数的充要条件是回旋值t=-1;
②若y=ax(a>0,且a≠1)为回旋函数,则回旋值t>1;
③若f(x)=sinωx(ω≠0)为回旋函数,则其最小正周期不大于2;
④对任意一个回旋值为t(t≥0)的回旋函数f(x),方程f(x)=0均有实数根.
其中为真命题的是
 
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=6-x2 的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某空间几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆 C1:(x-5)2+(y-3)2=9 与圆C2:x2+y2-4x+2y-9=0 的位置关系是(  )
A、相交B、内切C、外切D、内含

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=(a+bx)n(n?N*
(1)当a=
1
4
,b=2时,展开式前3项的二项式系数和为37,求展开式中二项式系数最大的项的系数;
(2)当时a=0,b=
1
2
,n=2时,y=f(x)与过点K(0,-1)的直线l相交于A,B两点,点A关于y轴的对称点为D.证明:点F(0,1)在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=t(t≠-1),an+1-Sn=n.
(Ⅰ) 当t为何值时,数列{an+1}是等比数列?
(Ⅱ) 设数列{bn}的前n项和为Tn,b1=1,点(Tn+1,Tn)在直线
x
n+1
-
y
n
=
1
2
上,在(Ⅰ)的条件下,若不等式
b1
a1+1
+
b2
a2+1
+…+
bn
an+1
≥m-
9
2+2an
对于n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,∠F1PF2=60°,则P到y轴的距离为(  )
A、
3
2
B、
6
2
C、
10
2
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=2,当n≥2时,Sn=2an,则S10=
 

查看答案和解析>>

同步练习册答案