精英家教网 > 高中数学 > 题目详情

已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(  )

(A)-=1 (B)-=1

(C)-=1 (D)-=1

 

【答案】

A

【解析】∵双曲线-=1的渐近线方程为y=±x,

C的标准方程为(x-3)2+y2=4,

∴圆心为C(3,0).

又渐近线方程与圆C相切,即直线bx-ay=0与圆C相切,

=2,

5b2=4a2.

又∵-=1的右焦点F2(,0)为圆心C(3,0),

a2+b2=9.

由①②得a2=5,b2=4.

∴双曲线的标准方程为-=1.故选A.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的动弦BC平行于虚轴,MN是双曲线的左、右顶点,

(1)求直线MBCN的交点P的轨迹方程;

(2)若P(x1,y1),B(x2,y2),求证:ax1x2的比例中项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的离心率e∈[,2],令双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则θ的取值范围是(    )

A.[]                    B.[

C.[]                  D.[,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的右焦点为F,若过F且倾斜角为60°的直线与双曲线有且只有一个交点,则双曲线的离心率是(    )

A.            B.           C.4              D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=k,则双曲线方程为(    )

A.=1                              B.=1

C.=1                               D.=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为(    )

A.30°        B.45°        C.60°          D.90°

查看答案和解析>>

同步练习册答案