精英家教网 > 高中数学 > 题目详情
12.顶点在原点,焦点为F(1,0)的抛物线方程为y2=4x.

分析 设抛物线方程为y2=2px,p>0,由此能求出抛物线方程.

解答 解:∵抛物线的顶点在原点,焦点为F(1,0),
∴设抛物线方程为y2=2px,p>0,且$\frac{p}{2}=1$,
∴抛物线方程为y2=4x.
故答案为:y2=4x.

点评 本题考查抛物线方程的求法,是基础题,解题时要认真审题,注意抛物线性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=|cosx|(x≥0)的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则$\frac{(1+{θ}^{2})sin2θ}{θ}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,3),$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow{b}$,则向量$\overrightarrow{c}$的单位向量$\overrightarrow{{c}_{0}}$=($\frac{4}{5}$,$\frac{3}{5}$)或(-$\frac{4}{5}$,-$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线x2=8y上的点P到抛物线的焦点距离为5,则点P的纵坐标为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式(x-1)(x+2)≤0的解集为(  )
A.(-2,1)B.[-2,1]C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A,B两地相距100km.按交通法规规定:A,B两地之间的公路上车速要求不低于60km/h且不高于100km/h.假设汽车以xkm/h速度行驶时,每小时耗油量为($4+\frac{1}{128000}{x^3}-\frac{1}{80}x$)升,汽油的价格是6元/升,司机每小时的工资是24元.
(1)若汽车从A地以64km/h的速度匀速行驶到B地,需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从A地到B地的总费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆的一个必要不充分条件是(  )
A.m∈(-5,3)B.m∈(-3,5)C.m∈(-3,1)∪(1,5)D.m∈(-5,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是各项均为正数的等差数列,首项a1=1,其前n项和为Sn;数列{bn}是等比数列,首项b1=2,且b2S2=16,b3S3=72.
(1)求数列{an},{bn}的通项公式;
(2)若${c_n}=\frac{S_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的通项公式为an=pn3+qn+2,且a2=4,a3=20,则a5=112.

查看答案和解析>>

同步练习册答案