精英家教网 > 高中数学 > 题目详情
由直线上的点向圆C:引切线,
求切线段长的最小值。

试题分析:解法1:, ,                           
,         

直线上的点向圆C引切线长是

∴ 直线上的点向圆C引的切线长的最小值是         
解法2:,           
圆心C距离是
∴直线上的点向圆C引的切线长的最小值是 
点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

曲线C1:,曲线C2,EF是曲线C1的任意一条直径,P是曲线C2上任一点,则·的最小值为 (   )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的渐近线与圆有公共点,则该双曲线的离心率的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为中心,为两个焦点的椭圆上存在一点,满足,则该椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求椭圆C的方程;(6分)
(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程表示双曲线,则实数k的取值范围是  (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线顶点为坐标原点,对称轴为x轴,焦点在3x-4y-12=0上,那么抛物线方程是(  )
A.y=16xB.y=-16xC.y=12xD.y=-12x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆的右焦点,点分别是轴、
轴上的动点,且满足.若点满足
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交
于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.

查看答案和解析>>

同步练习册答案