精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

 已知圆方程为:.

(Ⅰ)直线过点,且与圆交于两点,若,求直线的方程;

(Ⅱ)过圆上一动点作平行于轴的直线,设轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.

 

【答案】

(Ⅰ);                

(Ⅱ)点的轨迹方程是,轨迹是一个焦点在轴上的椭圆,除去短轴端点.  

【解析】(I)先讨论直线不存在时,是否符合题意.

然后再设直线斜率存在时的方程为,再利用点到直线的距离公式求出圆心到直线的距离,再利用弦长公式,建立关于k的方程,求解即可.

(II)本小题属于相关点求轨迹方程.设点的坐标为),点坐标为

点坐标是,再根据,得到

然后利用点M在圆上,可得到动点Q的轨迹方程,再通过方程判断轨迹是什么曲线.

解:(Ⅰ)①当直线垂直于轴时,则此时直线方程为与圆的两个交点坐标,其距离为. 满足题意   ………  1分

②若直线不垂直于轴,设其方程为,即     

设圆心到此直线的距离为,则,得  …………3分       

,                                    

故所求直线方程为                               

综上所述,所求直线为   …………7分                  

(Ⅱ)设点的坐标为),点坐标为

点坐标是                       …………9分

  即    …………11分          

又∵,∴                     

点的轨迹方程是,               …………13分     

轨迹是一个焦点在轴上的椭圆,除去短轴端点.    …………14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案