精英家教网 > 高中数学 > 题目详情

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为3万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?

【答案】
(1)解:由题意得G(x)=3+x,

由R(x)=

∴f(x)=R(x)﹣G(x)=


(2)解:当x>5时,∵函数y=f(x)递减,

∴f(x)<8.2﹣5=3.2(万元),

当0≤x≤5时,f(x)=﹣0.4(x﹣4)2+3.6,

当x=4时,f(x)有最大值为3.6(万元).

答:当工厂生产4百台时,可使赢利最大为3.6(万元)


【解析】(1)由题意可得f(x)=R(x)﹣G(x),对x讨论0≤x≤5,x>5即可得到;(2)分别讨论0≤x≤5,x>5的函数的单调性,即可得到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】专家研究表明,2.5是霾的主要成份,在研究2.5形成原因时,某研究人员研究了2.5与燃烧排放的等物质的相关关系.下图是某地某月2.5与相关性的散点图.

(Ⅰ)根据上面散点图,请你就2.5的影响关系做出初步评价;

(Ⅱ)根据有关规定,当排放量低于排放量达标,反之为排放量超标;当2.5值大于时雾霾严重,反之雾霾不严重.根据2.5与相关性的散点图填写好下面列联表,并判断有多大的把握认为“雾霾是否严重与排放量有关”:

雾霾不严重

雾霾严重

总计

排放量达标

排放量超标

总计

(Ⅲ)我们知道雾霾对交通影响较大.某市交通部门发现,在一个月内,当排放量分别是60,120,180时,某路口的交通流量(单位:万辆)一次是800,600,200,而在一个月内,排放量是60,120,180的概率一次是),求该路口一个月的交通流量期望值的取值范围.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若偶函数f(x)在(﹣∞,﹣1]上是增函数,则下列关系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:参数方程与极坐标系

在平面直角坐标系中,直线的参数方程为为参数, 为倾斜角),以坐标原点O为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为

1)求曲线的直角坐标方程,并 C的焦点F的直角坐标;

2)已知点,若直线C相交于A,B两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,若输入t=﹣1,则输出t的值等于(

A.3
B.5
C.7
D.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=
(1)求f(log2 )的值;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列不等关系正确的是( )
A.( <34<( 2
B.( 2<( <34
C.(2.5)0<( 2.5<22.5
D.( 2.5<(2.5)0<22.5

查看答案和解析>>

同步练习册答案