精英家教网 > 高中数学 > 题目详情

【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队人)进入了决赛,规定每人回答一个问题,答对为本队赢得分,答错得分,假设甲队中每人答对的概率均为,乙队中人答对的概率分別为,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.

(1)求的分布列;

(2)求甲、乙两队总得分之和等于分且甲队获胜的概率.

【答案】1)分布列见解析;(2

【解析】

试题(1)由题意知,的可能取值为,分别求出相应的概率,由此能求出的分布列;(2)由表示甲队得分等于乙队得分等于表示甲队得分等于乙队得分等于,可知互斥.利用互斥事件的概率计算公式即可得出甲、乙两队总得分之和等于分且甲队获胜的概率.

试题解析:(1)由题意知,的可能取值为由于乙队人答对的概率分别为,

,

,

,

,的分布列为:











2)由表示甲队得分等于乙队得分等于”,表示甲队得分等于乙队得分等于”, 可知互斥, ,则甲、乙两队总得分之和等于分且甲队获胜的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在点处的切线方程;

2)若不等式恒成立,求k的取值范围;

3)求证:当时,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程序框图如图所示,若其输出结果是140,则判断框中填写的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为整数,其前n项和为.规定:若数列满足前r项依次成公差为1的等差数列,从第项起往后依次成公比为2的等比数列,则称数列为“r关联数列”.

(1)若数列为“6关联数列”,求数列的通项公式;

(2)在(1)的条件下,求出,并证明:对任意

3)若数列为“6关联数列”,当,之间插入n个数,使这个数组成一个公差为的等差数列,求,并探究在数列中是否存在三项其中mkp成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是双曲线的一条渐近线,点都在双曲线上,直线轴相交于点,设坐标原点为.

1)求双曲线的方程,并求出点的坐标(用表示);

2)设点关于轴的对称点为,直线轴相交于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

3)若过点的直线与双曲线交于两点,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属不合格的零件,其中分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若一个零件的尺寸是,试判断该零件是否属于不合格的零件;

2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题是(  )

A.和两条异面直线都相交的两条直线是异面直线

B.和两条异面直线都相交于不同点的两条直线是异面直线

C.和两条异面直线都垂直的直线是异面直线的公垂线

D.是异面直线,是异面直线,则是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的偶函数和奇函数满足

1)求的解析式;

2)求证:在区间上单调递增;并求在区间的反函数;

3)设(其中为常数),若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x+1|+2|xm|

1)当m2时,求fx≤9的解集;

2)若fx≤2的解集不是空集,求实数m的取值范围.

查看答案和解析>>

同步练习册答案