精英家教网 > 高中数学 > 题目详情

如图,长方体中,,点上,且

(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

(Ⅰ)建立空间直角坐标系,利用空间向量解决(Ⅱ)

解析试题分析:(Ⅰ)以为坐标原点,分别以所在的直线为轴、轴、轴,建立如下图所示的空间直角坐标系.则
.                       ……2分


,所以平面.                                         ……6分
(Ⅱ)由(Ⅰ)得是平面的一个法向量,
设向量是平面的法向量,则
  
,则.                                          ……10分

所以二面角的余弦值为.                                            ……13分

考点:本小题注意考查空间中线面垂直的证明,二面角的求解.
点评:用空间向量证明立体几何问题的依据还是相应的判定定理,如第一问中必须强调;另外,用法向量求二面角时,求出的可能是要求的角的补角,要仔细判断二面角时锐角还是钝角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知四棱锥平面
,底面为直角梯形,
分别是的中点.

(1)求证:// 平面
(2)求截面与底面所成二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥的底面为菱形,平面, E、F分别为的中点,

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在直三棱柱(侧棱垂直底面)中,,且异面直线所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.

(1)求证:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大小;
(3)求点E到平面O1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)
如图,在四棱锥中,平面,底面是菱形,.分别是的中点.

(1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

图形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点.AC,BD交于O点.

(1)二面角Q-BD-C的大小:
(2)求二面角B-QD-C的大小.

查看答案和解析>>

同步练习册答案