【题目】已知函数.
(1)求在上的最值;
(2)若,当有两个极值点时,总有,求此时实数的值.
【答案】(1) 当时,,当时,.
(2) .
【解析】分析:,∵,∴,∴,∴在上单调递增,即可求解;(2)g′(x)=(x2+2x-1-a)ex,x1+x2=-2,a>-2,x2∈(-1,+∞),g(x2)≤t(2+x1)(ex2+1)(x22-1-a)ex2≤t(2+x1))(ex2+1),-2x2ex2≤t(-x2)(ex2+1),当x2=0时,t∈R;当x2∈(-1,0)时,恒成立,当x2∈(0,+∞)时,恒成立,综上所述.
详解:
(1),
∵,∴,∴,
∴在上单调递增,
∴当时,
当时,
(2),则
根据题意,方程有两个不同的实根,
所以,即,且.由,
可得,又,
所以上式化为对任意的恒成立.
(ⅰ)当时,不等式恒成立,;
(ⅱ)当时,恒成立,即.
令函数,显然,是上的增函数,
所以当时,,所以.
(ⅲ)当时,恒成立,即.
由(ⅱ)得,当时,,所以.
综上所述.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆:,左顶点为,经过点,过点作斜率为的直线交椭圆于点,交轴于点.
(1)求椭圆的方程;
(2)已知为的中点,,证明:对于任意的都有恒成立;
(3)若过点作直线的平行线交椭圆于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,椭圆C过点,两个焦点为,,E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,直线EF的斜率为,直线l与椭圆C相切于点A,斜率为.
求椭圆C的方程;
求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有、、、四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.
甲说:“、同时获奖.”
乙说:“、不可能同时获奖.”
丙说:“获奖.”
丁说:“、至少一件获奖”
如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )
A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com