精英家教网 > 高中数学 > 题目详情
18. 已知函数f(x)=sin(2x-$\frac{π}{6}$)
(1)用“五点法”在所给的直角坐标系中画出f(x)在[0,π]内的简图.
(2)求函数f(x)的周期和单调递增区间.

分析 (1)利用列表法,结合五点作图法进行取值作图.
(2)根据三角函数的单调性的性质进行求解即可.

解答 解:(1)

 2x-$\frac{π}{6}$ $-\frac{π}{6}$  $\frac{π}{2}$ π $\frac{3π}{2}$ $\frac{11π}{6}$
 x 0 $\frac{π}{12}$$\frac{π}{3}$ $\frac{7π}{12}$ $\frac{5π}{6}$ π
 y $-\frac{1}{2}$ 0 1 0-1$-\frac{1}{2}$ 
对应的图象为
(2)三角函数的周期T=$\frac{2π}{2}=π$,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ$-\frac{π}{6}$≤x≤2kπ+$\frac{π}{3}$,k∈Z,
即函数f(x)的单调递增区间为[kπ$-\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z.

点评 本题主要考查三角函数的图象和性质,要求熟练掌握相应的三角函数的性质以及五点法作图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow{b}$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)图象的一条对称轴为x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{a}{2}-\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{3}}{3}$,且$α,β∈(-\frac{π}{2},\frac{π}{2})$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-2y+2≥0}\\{mx-y≤0}\end{array}\right.$,若Z=2x-y的最大值为2,则实数m等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x3+2x(x∈R).给出下列结论:
①f(x)为R上的增函数;
②若a,b∈R,a+b≥0,则f(a)+f(b)≥f(-a)+f(-b);
③若a,b∈R,f(a)+f(b)≥f(-a)+f(-b),则a+b≥0;
④若f(log4k)+f(1)≥f(log0.25k)+f(-1),则实数k的取值范围是[$\frac{1}{4}$,+∞).
其中正确结论的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知tanα=2,则$\frac{sinα+2cosα}{5sinα-6cosα}$=1;$\frac{1}{{2sinαcosα-{{cos}^2}α}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题p:?x∈R,2x<3x;命题q:?x∈R,$\sqrt{x}=lo{g}_{\frac{1}{2}}x$,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x+1)=lgx,则函数f(2x-1)的定义域为(  )
A.(-1,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a+2bi=2-ai,其中a,b都是实数,i是虚数单位,则|a+bi|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C1:(x-3)2+(y+1)2=1,圆C2与圆C1关于直线2x-y-2=0对称,则圆C2的方程为(  )
A.(x-1)2+(y-2)2=1B.x2+(y-1)2=1C.(x+1)2+(y-1)2=1D.(x+2)2+(y-1)2=1

查看答案和解析>>

同步练习册答案