【题目】在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.
(1)求异面直线AC与BE所成角的余弦值;
(2)求二面角F-BC1-C的余弦值.
【答案】(1).(2).
【解析】
(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.
(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.
规范解答 (1) 因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,
所以=(-1,0,0),=
记异面直线AC和BE所成角为α,
则cosα=|cos〈〉|==,
所以异面直线AC和BE所成角的余弦值为.
(2) 设平面BFC1的法向量为= (x1,y1,z1).
因为=,=,
则
取x1=4,得平面BFC1的一个法向量为=(4,0,1).
设平面BCC1的法向量为=(x2,y2,z2).
因为=,=(0,0,2),
则
取x2= 得平面BCC1的一个法向量为=(,-1,0),
所以cos〈〉= =
根据图形可知二面角F-BC1-C为锐二面角,
所以二面角F-BC1-C的余弦值为.
科目:高中数学 来源: 题型:
【题目】设椭圆()的左右顶点为,上下顶点为,菱形的内切圆的半径为,椭圆的离心率为.
(1)求椭圆的方程;
(2)设是椭圆上关于原点对称的两点,椭圆上一点满足,试判断直线与圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直线PB与CD所成角的大小为,求BC的长;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以正四棱锥VABCD的底面中心O为坐标原点建立空间直角坐标系Oxyz,其中Ox∥BC,Oy∥AB,E为VC的中点.正四棱锥的底面边长为2a,高为h,且有cos〈,〉=-.
(1)求的值;
(2)求二面角B-VC-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某公司一种产品的日销售量(单位:百件)关于日最高气温(单位:)的散点图.
数据:
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量关于日最高气温的线性回归方程;
(2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:的焦距为,直线()与交于两个不同的点、,且时直线与的两条渐近线所围成的三角形恰为等边三角形.
(1)求双曲线的方程;
(2)若坐标原点在以线段为直径的圆的内部,求实数的取值范围;
(3)设、分别是的左、右两顶点,线段的垂直平分线交直线于点,交直线于点,求证:线段在轴上的射影长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项为的数列各项均为正数,且,.
(1)若数列的通项满足,且,求数列的前n项和为;
(2)若数列的通项满足,前n项和为,当数列是等差数列时,对任意的,均存在,使得成立,求满足条件的所有整数构成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为椭圆E:的左、右焦点,过点的直线l与椭圆E有且只有一个交点T.
(1)求面积的取值范围.
(2)若有一束光线从点射出,射在直线l上的T点上,经过直线l反射后,试问反射光线是否恒过定点?若是,请求出该定点;若否,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com