精英家教网 > 高中数学 > 题目详情

给出下列四个命题,其中真命题的序号为________.
(1)“直线a∥直线b”的必要不充分条件是“a平行于b所在的平面”;
(2)“直线l⊥平面α”的充要条件是“l垂直于平面α内的无数条直线”;
(3)“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;
(4)“平面α⊥平面β”的充分条件是“有一条与α平行的直线l垂直于β”.

解:对于(1),“直线a∥直线b”推不出“a平行于b所在的平面”;反之“a平行于b所在的平面”也不能推出直线a∥直线b,所以“直线a∥直线b”是“a平行于b所在的平面”;的既不充分也不必要条件故(1)不成立;
对于(2)“l⊥平面a”?“直线l⊥平面α内的所有直线;但“l垂直于平面α内的无数条直线”推不出“l⊥平面a”
故(2)不成立;
对于(3),“平面α∥平面β”能推出“α内有无数条直线平行于平面β”,但反之“α内有无数条直线平行于平面β”成立推不出“平面α∥平面β”,所以(3)对;
对于(4)“有一条与α平行的直线l垂直于β”成立,能推出α存在于l平行的直线垂直β,所以“平面α⊥平面β”所以(4)对
故答案为(3)(4).
分析:利用必要条件、充分条件和充要条件的判断方法及平面平行于垂直的判定与性质结合题设条件知(3)(4)成立,利用必要条件、充分条件和充要条件的判断方法及线面平行于线面垂直的判定与性质得到(1)(2)不成立.
点评:本题考查必要条件、充分条件和充要条件的判断及空间中线、面的位置关系,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在[-2,2]上的函数y=f(x)和y=g(x),其图象如图所示:给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根    ②方程g[f(x)]=0有且仅有3个根
③方程f[f(x)]=0有且仅有5个根    ④方程g[g(x)]=0有且仅有4个根
其中正确命题的序号(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的边分别为a,b,c,若实数λ,μ满足a+b=λc,ab=μc2,则称数对(λ,μ)为△ABC的“Hold对”,现给出下列四个命题:
①若△ABC的“Hold对”为(2,1),则△ABC为正三角形;
②若△ABC的“Hold对”为(2,
8
9
)
,则△ABC为锐角三角形;
③若△ABC的“Hold对”为(
7
6
1
3
)
,则△ABC为钝角三角形;
④若△ABC是以C为直角顶点的直角三角形,则以“Hold对”(λ,μ)为坐标的点构成的图形是矩形,其面积为
2
-1
2

其中正确的命题是
①③
①③
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题
①命题“?x∈R,cosx>0”的否定是“?x0∈R,cosx0≤0”
②若0<a<1,则方程x2+ax-3=0只有一个实数根;
③对于任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0;
④一个矩形的面积为S,周长为l,则有序实数对(6,8)可作为(S,l)取得的一组实数对,其正确命题的序号是
①③
①③
.(填所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)和y=g(x)的定义域均为{x|-2≤x≤2},其图象如图所示:

给出下列四个命题:
①函数y=f[g(x)]有且仅有6个零点;  
②函数y=g[f(x)]有且仅有3个零点;
③函数y=f[f(x)]有且仅有5个零点;  
④函数y=g[f(x)]有且仅有4个零点,其中正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省文登市高三上学期期中统考理科数学试卷(解析版) 题型:选择题

给出下列四个命题,其错误的是(     )

①已知是等比数列的公比,则“数列是递增数列”是“”的既不充分也不必要条件;

②若定义在上的函数是奇函数,则对定义域内的任意必有

③若存在正常数满足,则的一个正周期为

④函数图像关于对称.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

同步练习册答案