精英家教网 > 高中数学 > 题目详情
19.函数y=$\frac{x-4}{\sqrt{-{x}^{2}+5x-6}}$的定义域是(2,3).

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则-x2+5x-6>0,
即x2-5x+6<0,
解得2<x<3,
即函数的定义域为(2,3),
故答案为:(2,3)

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知a,b,x,y都是正数,M=$\sqrt{x}$+$\sqrt{y}$,N=$\sqrt{ax+by}$$•\sqrt{\frac{1}{a}+\frac{1}{b}}$,则(  )
A.M>NB.M≥NC.M<ND.M≤N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+ax+2,a∈R.
(1)若不等式f(x)≤0的解集为[1,2],求不等式f(x)≥1-x2的解集;
(2)若函数g(x)=f(x)+x2+1在区间(1,2)上有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={2,-1},B={m2-m,-1},且A=B,记由实数m的值构成的集合为C,则集合C的真子集个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=$\frac{2kx-8}{k{x}^{2}+2kx+1}$的定义域是R,则实数k的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{{x}^{2}-2}$-$\sqrt{2-{x}^{2}}$的定义域是(  )
A.[$\sqrt{2}$,+∞)B.(-∞,-$\sqrt{2}$]C.[-$\sqrt{2}$,$\sqrt{2}$]D.{-$\sqrt{2}$,$\sqrt{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知-$\frac{π}{4}$<α<$\frac{3π}{4}$,sin($\frac{π}{4}$-α)=$\frac{\sqrt{5}}{5}$,则sinα=$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在袋子中装有标注数字1、2、3、4的4个小球,这些小球除标注的数字外完全相同,现从中取出一个小球,记下数字后放回袋子,这样连续进行3次,则以记下的三个数为边,不能组成三角形的概率为$\frac{15}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\frac{1}{3}$x3+ax2+b2x+1,若a是从1,2,3三个数中任取一个数,b是从0,1,2三个数中任取一个数,则该函数有极值的概率为(  )
A.$\frac{7}{9}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案