精英家教网 > 高中数学 > 题目详情
已知向量
a
b
的夹角为60°,且|
a
|=2,|
b
|=1,若(2
a
+
b
)⊥(m
a
-
b
)
,则m的值为(  )
A、3
B、
1
3
C、
2
3
D、
3
2
分析:利用向量垂直的充要条件列出方程,利用多项式乘法展开,利用向量的数量积公式将方程表示成关于m的方程,求出m的值.
解答:解:∵(2
a
+
b
)⊥(m
a
-
b
)

(2
a
+
b
)•(m
a
-
b
)=0

2m
a
2
+(m-2)
a
b
-
b
2
=0

即8m+m-2-1=0
解得m=
1
3

故选B
点评:解决向量垂直的问题一般利用向量垂直的充要条件:数量积为0;解决有关向量的模的问题常利用向量模的平方等于向量的平方.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为
π
3
,|
a
|=
2
,则
a
b
方向上的投影为(  )
A、
3
B、
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为45°,且|
a
|=4,(
1
2
a
+
b
)•(2
a
-3
b
)=12,则|
b
|=
 
b
a
上的投影等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为120°,且|
a
|=|
b
|=4
,那么
b
•(2
a
+
b
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知向量
a
b
的夹角为120°,|
a
|=|
b
|=1.
c
a
+
b
共线,|
a
+
c
|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)已知向量
a
b
的夹角为120°,|
a
|=2
,且(2
a
+
b
)⊥
a
,则|
b
|
=________(  )

查看答案和解析>>

同步练习册答案