精英家教网 > 高中数学 > 题目详情

【题目】已知函数 满足 (其中 ).

1)求 的表达式;

2)对于函数 ,当 时, ,求实数 的取值范围.

3)当 时, 的值为负数,求 的取值范围.

【答案】12

3

【解析】试题分析:(1)利用换元法,求出函数的解析式;(2)由f(x)是R上的奇函数,增函数,

所以 即可求实数m取值的集合;

(3)由(1)中的单调性可将的值恒为负数转化为f(2)-4≤0,解不等式即可.

试题解析:

1 ,则 ,代入原函数得,

2 时, 是增函数, 是减函数且

所以 是定义域 上的增函数,

同理,当 时, 也是 上的增函数,

,则 为奇函数,

得:

所以 解得

则实数 的取值范围是

3 因为 是增函数,

所以 时,

又当 时, 的值为负数,所以

解得

所以 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知指数函数

(1)函数过定点,求的值;

(2)当时,求函数的最小值

(3)是否存在实数,使得(2)中关于的函数的定义域为时,值域为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.

A.[选修4-1:几何证明选讲]

如图, 分别与圆相切于点 经过圆心,且,求证: .

B.[选修4-2:矩阵与变换]

在平面直角坐标系中,已知点 ,先将正方形绕原点逆时针旋转,再将所得图形的纵坐标压缩为原来的一半、横坐标不变,求连续两次变换所对应的矩阵.

C.[选修4-4:坐标系与参数方程]

在平面直角坐标系中,已知曲线的参数方程为为参数).现以为极点, 轴的正半轴为极轴,建立极坐标系,求曲线的极坐标方程.

D.[选修4-5:不等式选讲]

已知为互不相等的正实数,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处有相同的切线.

(Ⅰ)若函数的图象有两个交点,求实数的取值范围;

(Ⅱ)若函数有两个极值点 ,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,圆的直角坐标方程为,直线的参数方程为为参数),射线的极坐标方程为

1)求圆和直线的极坐标方程;

(2)已知射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且方程 无实数根,下列命题:

1)方程 一定有实数根;

2)若 ,则不等式 对一切实数 都成立;

3)若 ,则必存在实数 ,使

4)若 ,则不等式 对一切实数 都成立.

其中,正确命题的序号是________________.(把你认为正确的命题的所有序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(公元前5-6世纪),祖冲之之子,齐梁时代的数学家. 他提出了一条原理:“幂势既同,則积不容异.这句话的意思是:两个等几何体若在所有等高处的水平截面的面积相等,则这两个何体的体积相等. 该原理在西方到十七世纪才由意大利数学家卡瓦列利发现,比祖晚一千一百多年. 椭球体是椭绕其轴旋转所成的旋转体. 将底面径皆为高皆为椭半球体及已被挖去了圆锥体的圆柱体放于同一平面. 以平行于平面的平面于距平面任意高处可横截得到两截面,可以证明知总成立. 据此,短轴长为长轴为球体的体积是 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).

(1)写出的函数关系式;

(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为 为原点, 轴上的两个动点,且,直线分别与椭圆交于 两点.

 

(Ⅰ)求的面积的最小值;

(Ⅱ)证明: 三点共线.

查看答案和解析>>

同步练习册答案