精英家教网 > 高中数学 > 题目详情
设数列{an}是由正数组成的等比数列,公比q=,且a1a2a3…a30=215,则a3a5a9…a30=________.

解析:设a1a4a7…a28=x,则a2a5a8…a29=xq10,a3a6a9…a30=xq20,

∵a1a2a3…a30=215,∴ x3q30=215,即 x3=1,x=1.

∴a3a6a9…a30=xq20=1×()20=210=1 024.

答案:1 024

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是由正数组成的等差数列,Sn是其前n项的和,并且a3=5,a4S2=28.
(1)求数列{an}的通项公式;
(2)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
对一切n∈N*均成立的最大实数a;
(3)对每一个k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列{bn},设Tn是数列{bn}的前n项和,试问是否存在正整数m,使Tm=2008?若存在求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•金华模拟)设{an}是由正数组成的等比数列,公比为q,Sn是其前n项和.
(1)若q=2,且S1-2,S2,S3成等差数列,求数列{an}的通项公式;
(2)求证:对任意正整数n,Sn,Sn+1,Sn+2不成等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.

查看答案和解析>>

同步练习册答案