精英家教网 > 高中数学 > 题目详情
过点M(
3
y0)
作圆O:x2+y2=1的切线,切点为N,如果y0=0,那么切线的斜率是
 
;如果∠OMN≥
π
6
,那么y0的取值范围是
 
考点:圆的切线方程
专题:计算题,直线与圆
分析:设切线方程为y=k(x-
3
),即kx-y-
3
k=0,圆心到直线的距离为d=
|-
3
k|
k2+1
=1,可得k的值;∠OMN≥
π
6
,则
ON
OM
1
2
,可得OM≤2,即可求出y0的取值范围.
解答: 解:y0=0,设切线方程为y=k(x-
3
),即kx-y-
3
k=0,
圆心到直线的距离为d=
|-
3
k|
k2+1
=1,∴k=±
2
2

∠OMN≥
π
6
,则
ON
OM
1
2

∴OM≤2,
∴3+y02≤4,
∴-1≤y0≤1,
故答案为:±
2
2
;-1≤y0≤1.
点评:本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中若A(10,-
3
),B(6,
π
3
)则线段AB中点的极坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1.对n∈N*有an≠0且Sn=
n+1
2
an
(1)求数列{an}的通项公式;
(2)求证:
1
a
2
1
+
1
a
2
2
+
1
a
2
3
+…+
1
a
2
n
7
4

(3)若数列{bn}的各项都为正数,且(bnn+1=an+1,求数列{bn}的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln|x-2|-m(m∈R)的所有零点之和为(  )
A、-4B、2
C、4D、与实数m有关

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一众数是7,则下列所给数据可能是他们投中次数总和的为(  )
A、20B、28C、30D、31

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),下列命题:
①若方程f(x)=x无实数根,则方程f[f(x)]=x也一定没有实数根;
②若a>0,且方程f(x)=x无实数根,则不等式f[f(x)]>x对一切实数x都成立;
③若1<a<3,b=2a,且有x1<x2,x1+x2=1-a,则f(x1)<f(x2).
其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+1
-ax(a>0),求a的取值范围,使函数f(x)在(0,+∞)上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+(a-1)x+1.
(1)函数f(x)在(-∞,-1)上单调递增,求实数a的取值范围;
(2)关于x的不等式
f(x)+a-1
x
≥2在x∈[1,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案