精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

某市某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔月8号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.

请你根据以上数据,解决下列问题:

(1)引进该设备多少年后,开始盈利?

(2)引进该设备若干年后,有两种处理方案:

第一种:年平均盈利达到最大值时,以26万元的价格卖出;

第二种:盈利总额达到最大值时,以8万元的价格卖出.

问哪种方案较为合算?并说明理由.

 

【答案】

解:(1)设引进设备n年后开始盈利,盈利为y万元,

则y=50n-(12n+×4)-98=-2n2+40n-98,由y>0,得10-<n<10+

 

∵n∈N*,∴3≤n≤17,即3年后开始盈利. …………………6分

(2)方案一:年平均盈利为=-2n-+40≤-2+40=12,

 

当且仅当2n=,即n=7时,年平均利润最大,共盈利12×7+26=110万元.

 

方案二:盈利总额y=-2(n-10)2+102,n=10时,y取最大值102,

即经过10年盈利总额最大,

共计盈利102+8=110万元.

两种方案获利相等,但由于方案二时间长,所以采用方案一合算.…………12分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案