【题目】如图,曲线C由上半椭圆C1: =1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为 .
(1)求a,b的值;
(2)过点B的直线l与C1 , C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.
【答案】
(1)解:在C1、C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半椭圆C1的左右顶点.
设C1:的半焦距为c,由 = 及a2﹣c2=b2=1得a=2.
∴a=2,b=1.
(2)解:由(1)知上半椭圆C1的方程为 +x2=1(y≥0).
易知,直线l与x轴不重合也不垂直,设其方程为y=k(x﹣1)(k≠0),
代入C1的方程,整理得
(k2+4)x2﹣2k2x+k2﹣4=0.(*)
设点P(xp,yp),
∵直线l过点B,
∴x=1是方程(*)的一个根,
由求根公式,得xp= ,从而yp= ,
∴点P的坐标为( , ).
同理,由 得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),
∴ = (k,﹣4), =﹣k(1,k+2),
∵AP⊥AQ,∴ =0,即 [k﹣4(k+2)]=0,
∵k≠0,∴k﹣4(k+2)=0,解得k=﹣ .
经检验,k=﹣ 符合题意,
故直线l的方程为y=﹣ (x﹣1),即8x+3y﹣8=0.
【解析】(1)在C1、C2的方程中,令y=0,即得b=1,设C1:的半焦距为c,由 = 及a2﹣c2=b2=1得a=2;(2)由(1)知上半椭圆C1的方程为 +x2=1(y≥0),设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp , yp),依题意,可求得点P的坐标为( , );同理可得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),利用 =0,可求得k的值,从而可得答案.
科目:高中数学 来源: 题型:
【题目】定义在区间[a,b]上的连续函数y=f(x),如果,使得,则称为区间[a,b]上的“中值点”,下列函数:
①; ②; ③; ④中,在区间[O,1]上“中值点”多于一个的函数序号为( )
A. ①② B. ①③ C. ②③ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm | <170cm | 总计 | |
男生身高 | |||
女生身高 | |||
总计 |
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:K2=
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣传费(万元) | 38 | 48 | 58 | 68 | 78 | 88 |
年销售量(吨) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式,即.对上述数据作了初步处理,得到相关的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根据所给数据,求关于的回归方程;
(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好.该公司某年投入的宣传费用(单位:万元)分别为:、、、、、,试根据回归方程估计年销售量,从这年中任选年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望.(其中为自然对数的底数,)
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.
(1)求证:C1M∥平面A1ADD1;
(2)若CD1垂直于平面ABCD且CD1= ,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:
其中,点为轴上关于原点对称的两点,曲线段是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处()的切线的斜率相等.
(1)求曲线段在图纸上对应函数的解析式,并写出定义域;
(2)车辆从经倒爬坡,定义车辆上桥过程中某点所需要的爬坡能力为:(该点与桥顶间的水平距离)(设计图纸上该点处的切线的斜率),其中的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力.它们的爬坡能力分别为米,米,米,又已知图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com