精英家教网 > 高中数学 > 题目详情

【题目】小赵和小王约定在早上之间到某公交站搭乘公交车去上学,已知在这段时间内,共有班公交车到达该站,到站的时间分别为,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________

【答案】

【解析】分析:设甲到达汽车站的时刻为x,乙到达汽车站的时刻为y,则0≤x≤15,0≤y≤15,由几何概型的计算公式能求出甲乙两人乘同一班车的概率.

详解:如图,设甲到达汽车站的时刻为x,乙到达汽车站的时刻为y,

0≤x≤15,0≤y≤15,

甲、乙两人到达汽车站的时刻(x,y)所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则甲、乙两人要想乘同一班车,

必须满足{(x,y)|

即(x,y)必须落在图形中的2个带阴影的正方形内,

所以由几何概型的计算公式得P==

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程f(x)-mx-m=0有两个不同的实根,则实数m的取值范围是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 上,且.

(1)求证: 的中点;

(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数).

1)分别求出曲线和直线的直角坐标方程;

2)若点在曲线上,且到直线的距离为1,求满足这样条件的点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数fx)=xR时,分别给出下面几个结论:

①等式f(-x)=-fx)在xR时恒成立;

②函数fx)的值域为(-1,1);

③若x1x2,则一定有fx1)≠fx2);

④方程fx)=xR上有三个根.

其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市气象站观测点记录的连续天里,指数(空气质量指数)与当天的空气水平可见度(单位cm)的情况如下表1:

表1

该市某月指数频数分布如下表2:

表2

频数

(1)设,根据表1的数据,求出关于的回归方程;

(参考公式:;其中

(2)小张开了一家洗车店,经统计,当不高于时,洗车店平均每天亏损约元;当时,洗车店平均每天收入月元;当大于时,洗车店平均每天收入约元;根据表估计小张的洗车店该月份平均每天的收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若关于x的不等式ax23x+20aR)的解集为{x|x1xb},求ab的值;

2)解关于x的不等式ax23x+25axaR).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往旅游,他先前进了,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了, 当他记起诗句“不到长城非好汉”,便调转车头继续前进. 则该同学离起点的距离与时间的函数关系的图象大致为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案