精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在平面直角坐标系xOy中,设椭圆E: =1(a>b>0),其中b= a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.

(1)求椭圆E的方程;
(2)过P点作斜率为k1 , k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.

【答案】
(1)解:∵F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.

∴c=1,又b= a,a2=b2+c2

联立解得:a=2,b=

∴椭圆方程为


(2)解:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).

AC:y=k1(x﹣1)+1,与椭圆联立,得

同理,

,∴k1+k2=0.


【解析】(1)由题意可得:c=1,又b= a,a2=b2+c2 , 联立解出即可得出.(2)设A(x1 , y1),B(x2 , y2),C(x3 , y3),D(x4 , y4).AC:y=k1(x﹣1)+1,BD:y=k2(x﹣1)+1,分别与椭圆方程联立,利用根与系数的关系、两点之间的距离公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角为(
A.90°
B.45°
C.60°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求证:平面CBE⊥平面EDB;
(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 )满足 =2,且 的夹角为120° , t∈R,则|(1﹣t) +t |的最小值是 . 已知 =0,向量 满足( )( )=0,| |=5,| |=3,则 的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知 =
(1)求角C的大小;
(2)若c=2,求△ABC面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知| |=4,| |=8,| |=4
(1)计算:① ,②|4 ﹣2 |
(2)若( +2 )⊥(k ),求实数k的值.

查看答案和解析>>

同步练习册答案