【题目】若函数f(x)满足下列条件:在定义域内存在x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.
(1)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(2)已知函数 具有性质M,求a的取值范围.
【答案】
(1)证明:f(x)=2x代入f(x0+1)=f(x0)+f(1)得:
,
即: ,解得x0=1.
所以函数f(x)=2x具有性质M.
(2)解:h(x)的定义域为R,且可得a>0.
因为h(x)具有性质M,所以存在x0,
使h(x0+1)=h(x0)+h(1),
代入得: .
化为2(x02+1)=a(x0+1)2+a,
整理得:(a﹣2)x02+2ax0+2a﹣2=0有实根.
①若a=2,得 .
②若a≠2,得△≥0,即a2﹣6a+4≤0,解得:a ,
所以:a .
综上可得a .
【解析】1、由题设条件可以 得 到,x0=1.由此可得性质成立。
2、具有性质M的函数h(x)满足,整理得到关于的方程,讨论a的取值注意讨论二次项系数是否为零的情况。
【考点精析】认真审题,首先需要了解对数的运算性质(①加法:②减法:③数乘:④⑤).
科目:高中数学 来源: 题型:
【题目】经市场调查,东方百货超市的一种商品在过去的一个月内(以30天计算),销售价格f(t)与时间(天)的函数关系近似满足 ,销售量g(t)与时间(天)的函数关系近似满足g(t)= .
(1)试写出该商品的日销售金额W(t)关于时间t(1≤t≤30,t∈N)的函数表达式;
(2)求该商品的日销售金额W(t)的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π]
(1)若 ∥ ,求x的值;
(2)记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求数列{an}的通项公式;
(2)令 ,求数列{bn}的前2n项和T2n .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com