精英家教网 > 高中数学 > 题目详情

【题目】若不等式[2tx2﹣(t2﹣1)x+2]lnx≤0对任意x∈(0,+∞)恒成立,则实数t的值是

【答案】-1
【解析】解:不等式[2tx2﹣(t2﹣1)x+2]lnx≤0对任意x∈(0,+∞)恒成立,

当lnx≥0,即x≥1时,2tx2﹣(t2﹣1)x+2≤0恒成立.

当t≥0时,2tx2﹣(t2﹣1)x+2≤0不恒成立,

则t<0,且2t﹣(t2﹣1)+2≤0,解得t≤﹣1或t≥3(舍去),

当t≤﹣1时,对称轴x= <0<1,y=2tx2﹣(t2﹣1)x+2在x≥1递减,

2tx2﹣(t2﹣1)x+2≤0恒成立;

当lnx<0,即0<x<1时,2tx2﹣(t2﹣1)x+2≥0恒成立.

由题意可得t≤﹣1,

且对称轴x= <0,y=2tx2﹣(t2﹣1)x+2在0<x<1递减,

则2t0﹣(t2﹣1)0+2≥0,且2t﹣(t2﹣1)+2≥0,解得﹣1≤t≤3,

综上可得﹣1≤t≤﹣1,即为t=﹣1.

所以答案是:﹣1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax+ ﹣1. (Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a= 时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣ ,若对于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . (Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数 ,若在[1,e]上至少存在一点x0 , 使得f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD为正方形,过A作线段SA⊥平面ABCD,过A作与SC垂直的平面交SB,SC,SD于E,K,H,求证:E是点A在直线SB上的射影.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性.
(1)f(x)=x2-|x|+1,x∈[-1,4];
(2)f(x)=
(3)f(x)=
(4)f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3 (k+1)x2+3kx+1,其中k∈R.
(1)当k=3时,求函数f(x)在[0,5]上的值域;
(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 中,点E,F分别是棱CC1 , BB1上的点,点M是线段AC上的动点,EC=2FB=2,若MB∥平面AEF,试判断点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2是某等轴双曲线的两个焦点,P为该双曲线上一点,若PF1⊥PF2 , 则以F1、F2为焦点且经过点P的椭圆的离心率是

查看答案和解析>>

同步练习册答案