精英家教网 > 高中数学 > 题目详情
定义一种运算如下:
x1y1
x2y2
=x1y2-x2y1
,复数z=
3
+i
-1
3
-i
i
(i是虚数单位)的共轭复数是(  )
A、
3
-1+(
3
-1)i
B、
3
-1-(
3
-1)i
C、
3
+1+(
3
+1)i
D、
3
+1-(
3
+1)i
分析:根据条件中定义的行列式,写出含有复数的行列式的结果,根据共轭复数的定义,直接写出共轭复数即可.
解答:解:
∵行列式的运算定义为
.
x1y1
x2y2
.
=x1y2-x2y1

z=
.
3
+i
-1
3
-i
i
.
=
3
i-1+
3
 -i
=(
3
-1
)+(
3
-1
)i,
所以它的共轭复数为:
3
-1-(
3
-1)i

故选B.
点评:本题是一个新定义问题,考查同学们的理解能力,解题的关键是理解行列式的展开式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(2x)*
1
2x
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-
1
2
),(
1
2
,+∞)

其中所有正确说法的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

定义平面向量之间的一种运算“⊙”如下:对任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),点N(x,y)满足
ON
=a⊙b(其中O为坐标原点),则|
ON
|2
的最大值为(  )
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对于任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质;
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(3x)*(
1
3x
)
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-
1
3
),(
1
3
,+∞)

其中所有正确说法的序号为

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南师大附中高三第三次月考数学试卷(文科)(解析版) 题型:填空题

在实数集R中定义一种运算“*”,对于任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质;
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为
其中所有正确说法的序号为   

查看答案和解析>>

科目:高中数学 来源:2011年4月北京市人大附中模块考试数学试卷(必修4)(解析版) 题型:选择题

定义平面向量之间的一种运算“⊙”如下:对任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(θ∈R),点N(x,y)满足=a⊙b(其中O为坐标原点),则的最大值为( )
A.
B.
C.
D.2

查看答案和解析>>

同步练习册答案