【题目】已知函数f(x)=x2+bx+c,其中b,c∈R.
(1)当f(x)的图象关于直线x=1对称时,b=______;
(2)如果f(x)在区间[-1,1]不是单调函数,证明:对任意x∈R,都有f(x)>c-1;
(3)如果f(x)在区间(0,1)上有两个不同的零点.求c2+(1+b)c的取值范围.
【答案】(1)-2 (2)证明见解析 (3)(0,)
【解析】
(1)求得f(x)的对称轴,由题意可得b的方程,解方程可得b;
(2)由题意可得-1<-<1,即-2<b<2,运用f(x)的最小值,结合不等式的性质,即可得证;
(3)f(x)在区间(0,1)上有两个不同的零点,设为r,s,(r≠s),r,s∈(,1),可设f(x)=(x-r)(x-s),将c2+(1+b)c写为f(0)f(1),再改为r,s的式子,运用基本不等式即可得到所求范围.
(1)函数f(x)=x2+bx+c的对称轴为x=-,
由f(x)的图象关于直线x=1对称,
可得-=1,解得b=-2,
故答案为:-2.
(2)证明:由f(x)在[-1,1]上不单调,
可得-1<-<1,即-2<b<2,
对任意的x∈R,f(x)≥f(-)=-+c=c-,
由-2<b<2,可得f(x)≥c->c-1;
(3)f(x)在区间(0,1)上有两个不同的零点,
设为r,s,(r≠s),r,s∈(0,1),
可设f(x)=(x-r)(x-s),
由c2+(1+b)c=c(1+b+c)=f(0)f(1)=rs(1-r)(1-s),
且0<rs(1-r)(1-s)<[]2[]2=,
则c2+(1+b)c∈(0/span>,).
科目:高中数学 来源: 题型:
【题目】设0<a<1,则函数f(x)=loga||( )
A.在(-∞,-1)和(1,+∞)上单调递减,在(-1,1)上单调递增
B.在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减
C.在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递增
D.在(-∞,-1)和(1,+∞)上单调递减,在(-1,1)上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD为正方形,侧棱底面ABCD,且,E,F,H分别是线段PA,PD,AB的中点.
(1)求证:平面EFH;
(2)求证:平面AHF;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经销商销售某种产品,在一个销售季度内,每售出该产品获利润元;未售出的产品,每亏损元.根据以往的销售记录,得到一个销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了该产品.用(单位:,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内经销该产品的利润.
(1)将表示为的函数;
(2)根据直方图估计利润不少于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,对任意实数x,y满足f(x+y)=f(x)+f(y)+,且f()=0,当x>时,f(x)>0.给出以下结论
①f(0)=-
②f(-1)=-
③f(x)为R上减函数
④f(x)+为奇函数;
⑤f(x)+1为偶函数
其中正确结论的有( )个
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)若函数y=f(x)的图象与直线y=x+a没有交点,求a的取值范围;
(3)若函数h(x)=+m2x-1,x∈[0,log23],是否存在实数m使得h(x)最小值为0,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.
(Ⅰ)证明:平面A1BD∥平面CD1B1;
(Ⅱ)求三棱柱ABD﹣A1B1D1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com