精英家教网 > 高中数学 > 题目详情

【题目】如图,从参加环保知识竞赛的1200名学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

1这一组的频数、频率分别是多少?

2)估计这次环保知识竞赛的及格率。(分及以上为及格)

3)若准备取成绩最好的300名发奖,则获奖的最低分数约为多少?

【答案】(1)频数15 频率0.25;(2;(282

【解析】

1)根据表中数据先计算出频率,然后再利用乘以对应频率即可得到频数;

2)根据图表计算出样本中的及格率,然后用样本估计总体即可得到这次环保知识竞赛的及格率;

(3)首先分析获奖的最低分数所在区间,然后利用所在区间中此最低分数前面的数据所占的比例乘以对应的区间长度,从而可求出最低分数的值.

1)频率为:,频数为:

2)根据频率分布直方图可知,分及以上对应的频率为

用样本估计总体可知,估计这次环保知识竞赛的及格率为

(3)因为有:人,人,

所以最低分数所在区间为,且中获奖的有人,所占区间总人数的比例为

所以最低分数为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近10年投入的年研发费用与年销售量 的数据,得到散点图如图所示:

1)利用散点图判断,(其中为大于0的常数)哪一个更适合作为年研发费用和年销售量的回归方程类型(只要给出判断即可,不必说明理由).

2)对数据作出如下处理:令,得到相关统计量的值如下表:

根据(1)的判断结果及表中数据,求关于的回归方程;

3)已知企业年利润(单位:千万元)与的关系为(其中),根据(2)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几个命题中,假命题是(

A. ,则的否命题

B. ,函数在定义域内单调递增的否定

C. 是函数的一个周期是函数的一个周期

D. 的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于曲线,有如下结论:

①曲线关于原点对称;

②曲线关于坐标轴对称;

③曲线是封闭图形;

④曲线不是封闭图形,且它与圆无公共点;

⑤曲线与曲线个交点,这点构成正方形.其中有正确结论的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与抛物线(常数)相交于不同的两点,且为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).

1)用表示出点、点的坐标,并证明垂直于轴;

2)求的面积,证明的面积与无关,只与有关;

3)小张所在的兴趣小组完成上面两个小题后,小张连,再作与平行的切线,切点分别为,小张马上写出了的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的经过点

(1)求抛物线的方程;

(2)过抛物线焦点F的直线l交抛物线于AB两点,若|AB|=8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果存在区间,其中,同时满足:

内是单调函数:②当定义域为时,的值域为,则称函数是区间上的“保值函数”,区间称为“保值函数”.

(1)求证:函数不是定义域上的“保值函数”;

(2)若函数)是区间上的“保值函数”,求的取值范围;

(3)对(2)中函数,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的左焦点作圆的切线交双曲线的右支于点,且切点为,已知为坐标原点,为线段的中点(点在切点的右侧),若的周长为,则双曲线的渐近线的方程为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案