精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2x

(1)试求函数F(x)=f(x)+f(2x),x∈(﹣∞,0]的最大值;

(2)若存在x∈(﹣∞,0),使|af(x)﹣f(2x)|>1成立,试求a的取值范围;

(3)当a0,且x∈[0,15]时,不等式f(x+1)≤f[(2x+a)2]恒成立,求a的取值范围.

【答案】(1)2 ; (2)a<0,或a>2; .(3)a≥1.

【解析】

(1)把f(x)代入到F(x)中化简得到F(x)的解析式求出F(x)的最大值即可;

(2)可设2x=t,存在t(0,1)使得|t2﹣at|>1,讨论求出解集,让a大于其最小,小于其最大即可得到a的取值范围;

(3)不等式f(x+1)≤f[(2x+a)2]恒成立即为恒成立即要,根据二次函数求最值的方法求出最值即可列出关于a的不等式,求出解集即可

(1)∵x∈(﹣∞,0],F(x)=f(x)+f(2x)=2x+4x,令2x=t,(0<t≤1),

即有F(x)=t2+t= 单调递增,

(2)令2x=t,则存在t(0,1)使得|t2﹣at|>1

所以存在t(0,1)使得t2﹣at>1,或t2﹣at<﹣1.

即存在t(0,1)使得,∴a<0,或a>2;

(3)由f(x+1)≤f[(2x+a)2]得x+1≤(2x+a)2恒成立

因为a0,且x∈[0,15],所以问题即为恒成立,

设m(x)=,∴

所以,当t=1时,m(x)max=1,∴a≥1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系;
(1)设M(x,y)是圆C上的动点,求m=3x+4y的取值范围;
(2)求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.
(1)求这4人中恰有1人去淘宝网购物的概率;
(2)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.

组号

分组

回答正确的人数

回答正确的人数
占本组的频率

第1组

[15,25)

a

0.5

第2组

[25,35)

18

x

第3组

[35,45)

b

0.9

第4组

[45,55)

9

0.36

第5组

[55,65]

3

y


(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P的切线方程;
(2)若f(x)≤0恒成立求m的取值范围;
(3)求函数f(x)在区间[1,e]上最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设顶点在原点,焦点在轴上的拋物线过点,过作抛物线的动弦 ,并设它们的斜率分别为 .

(Ⅰ)求拋物线的方程;

(),求证:直线的斜率为定值,并求出其值;

III)若,求证:直线恒过定点,并求出其坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线 的极坐标方程是 ,以极点为原点 ,极轴为 轴正半轴(两坐标系取相同的单位长度)的直角坐标系 中,曲线 的参数方程为: 为参数).
(1)求曲线 的直角坐标方程与曲线 的普通方程;
(2)将曲线 经过伸缩变换 后得到曲线 ,若 分别是曲线 和曲线 上的动点,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1(a>b>0)的离心率为 ,P(﹣2,1)是C1上一点.
(1)求椭圆C1的方程;
(2)设A,B,Q是P分别关于两坐标轴及坐标原点的对称点,平行于AB的直线l交C1于异于P、Q的两点C,D,点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案