【题目】对于一个向量组,令,如果存在,使得,那么称是该向量组的“长向量”
(1)若是向量组的“长向量”,且,求实数的取值范围;
(2)已知,,均是向量组的“长向量”,试探究,,的等量关系并加以证明.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD为矩形,O,E分别为AD,PB的中点,平面平面ABCD,,.
(1)求证:平面PCD;
(2)求证:平面PCD;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了合理定价,先进行试销售,其单价x(元)与销量y(个)相关数据如表:
单价x(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
销量y(个) | 12 | 11 | 9 | 7 | 6 |
(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;
(2)若该新造型糖画每个的成本为5.7元,要使得进入售卖时利润最大,请利用所求出的线性回归方程确定单价应该定为多少元?(结果保留到整数)
参考公式:线性回归方程yx中斜率和截距最小二乘法估计计算公式:.参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(1)求椭圆的方程;
(2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求证:直线的斜率与直线MN的斜率之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是平面内互不平行的三个向量,,有下列命题:①方程不可能有两个不同的实数解;②方程有实数解的充要条件是;③方程有唯一的实数解;④方程没有实数解,其中真命题有_______________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右焦点分别为,离心率为,是上的一个动点.当是的上顶点时,的面积为.
(1)求的方程;
(2)设斜率存在的直线与的另一个交点为.若存在点,使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(其中t为参数),在以原点O为极点,以轴为极轴的极坐标系中,曲线C的极坐标方程为.
(1)求直线的普通方程及曲线的直角坐标方程;
(2)设是曲线上的一动点, 的中点为,求点到直线的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记,表示S所有可能取值中的最小值,则下列命题中真命题的序号是________.(写出所有真命题的序号)
①S有5个不同的值;②若,则与无关;③若,则与无关;
④若,则;⑤若,,则与的夹角为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com