(8分)如图,四棱锥底面是正方形且四个顶点在球的同一个大圆(球面被过球心的平面截得的圆叫做大圆)上,点在球面上且面,且已知。
(1)求球的体积;
(2)设为中点,求异面直线与所成角的余弦值。
科目:高中数学 来源: 题型:
(本小题满分12分)
如图,四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB//CD,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4。
(I)设M是PC上的一点,证明:平面MBD⊥平面PAD。
(II)求四棱锥P—ABCD的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分,第(1)小题6分,第(2)小题8分)
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=,点E是线段SD上任意一点。
(1)求证:AC⊥BE;
(2)若二面角C-AE-D的大小为,求线段的长。
查看答案和解析>>
科目:高中数学 来源:上海市长宁区2010届高三第二次模拟考试数学理 题型:解答题
(本题满分14分,第(1)小题6分,第(2)小题8分)
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=,点E是线段SD上任意一点。
(1)求证:AC⊥BE;
(2)若二面角C-AE-D的大小为,求线段的长。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题8分)
如图,四棱锥ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO底面ABCD,E是PC的中点.
求证: (1)∥平面;
(2)平面平面.
查看答案和解析>>
科目:高中数学 来源:上海市长宁区2010届高三第二次模拟考试数学理 题型:解答题
(本题满分14分,第(1)小题6分,第(2)小题8分)
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=,点E是线段SD上任意一点。
(1)求证:AC⊥BE;
(2)若二面角C-AE-D的大小为,求线段的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com