精英家教网 > 高中数学 > 题目详情
5.设U=R,A={x|1≤x≤3},B={x|2<x≤4}.
(1)求A∩B;   
(2)求A∪B.

分析 (1)直接利用交集运算得答案;
(2)直接利用并集运算得答案.

解答 解:(1)∵A={x|1≤x≤3},B={x|2<x≤4},
∴A∩B={x|2<x≤3};
(2))∵A={x|1≤x≤3},B={x|2<x≤4},
∴A∪B={x|1≤x≤4}.

点评 本题考查交集、并集及其运算,是基础的会考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.给出下列命题:
(1)终边在y轴上的角的集合是$\{α|α=\frac{kπ}{2},k∈{Z}\}$;
(2)把函数f(x)=2sin2x的图象沿x轴方向向左平移$\frac{π}{6}$个单位后,得到的函数解析式可以表示成$f(x)=2sin2(x+\frac{π}{6})$;
(3)函数f(x)=$\frac{1}{2}sinx+\frac{1}{2}|{sinx}$|的值域是[-1,1];
(4)已知函数f(x)=2cosx,若存在实数x1,x2,使得对任意的实数x都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为2π.
其中正确的命题的序号为(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-x(e为自然对数的底数)
(1)求函数f(x)在(0,f(0))处的切线方程;
(2)若对于任意的x∈(0,2),不等式f(x)>ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x-1}{1+x}$.
(1)求证:函数f(x)在区间(-1,+∞)上是增加的;
(2)设g(x)=f(2x),求证:函数g(x)是奇函数;
(3)在(2)的前提下,若g(x-1)+g(3-2x)<0,求实数x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若-9,a1,a2,-1四个实数成等差数列,-9,b1,b2,b3,-1五个实数成等比数列,则$\frac{{a}_{2}-{a}_{1}}{{b}_{2}}$=-$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2-2|x|-3,(x∈[-4,4]).
(1)求证:f(x)是偶函数;
(2)画出函数f(x)的图象,并指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是单调递增还是单调递减;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{a}{a-1}$(ax-a-x)(a>0且a≠1).
(1)判断函数f(x)的奇偶性和单调性(单调性不需证明);
(2)若对于任意x∈R,f(x-λ)+f(x2-λ)>0恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,(-4≤x<0)}\\{-x+3,(x≥0)}\end{array}\right.$,若f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象,并指出函数的定义域、值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若关于x、y的方程(m2-4m-5)x2+(m2+5m-6)y2=1表示焦点在y轴上的双曲线,则实数m的取值范围是(1,5).

查看答案和解析>>

同步练习册答案