精英家教网 > 高中数学 > 题目详情

如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

(1)参考解析;(2) ;(3)

解析试题分析:(1)由正三棱柱,可得平面ACB⊥平面.又DB⊥AC.所以如图建立空间直角坐标系.分别点A,E,B,D, 的坐标,得出相应的向量.即可得到向量AE与向量BD,向量的数量积为零.即可得直线平面.

(2)由平面,平面分别求出这两个平面的法向量,根据法向量的夹角得到二面角的余弦值(根据图形取锐角).
(3)点到平面的距离,转化为直线与法向量的关系,再通过解三角形的知识即可得点到平面的距离.本小题关键是应用解三角形的知识.
试题解析:(1)证明:建立如图所示,
  ∵ 
     即AE⊥A1D,  AE⊥BD
∴AE⊥面A1BD
(2)由 ∴取
设面AA1B的法向量为  
由图可知二面角D—BA1—A的余弦值为  
(3),平面A1BD的法向量取
则B1到平面A1BD的距离d= 
考点:1.空间坐标系的建立.2.线面垂直的证明.4.二面角的求法.5.点到平面的距离公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在边长为的正方形中,点在线段上,且,作//,分别交于点,作//,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面; 
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥的底面的菱形,,点边的中点,交于点

(1)求证:
(2)若的大小;
(3)在(2)的条件下,求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体中,为边长为的正方形,为直角梯形,

(1)求异面直线所成角的大小;
(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在四棱锥中,底面是矩形,平面的中点,是线段上的点.

(1)当的中点时,求证:平面
(2)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在Rt中, D、E分别是上的点,且,将沿折起到的位置,使,如图2.

(1)求证:平面平面
(2)若,求与平面所成角的余弦值;
(3)当点在何处时,的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 已知四边形ABCDBCEG均为直角梯形,ADBCCEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证:AG平面BDE;
(2)求:二面角GDEB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFGBAACEDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求证:BE⊥平面DEFG
(2)求证:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.

(1)若D为侧棱SB上一点,当为何值时,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.

查看答案和解析>>

同步练习册答案