精英家教网 > 高中数学 > 题目详情
17.中国乒乓球队备战里约奥运会热身赛暨选拨赛于2016年7月14日在山东威海开赛,种子选手M与B1,B2,B3三位非种子选手分别进行一场对抗赛,按以往多次比赛的统计,M获胜的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各场比赛互不影响.
(1)若M至少获胜两场的概率大于$\frac{7}{10}$,则M入选征战里约奥运会的最终大名单,否则不予入选,问M是否会入选最终的大名单?
(2)求M获胜场数X的分布列和数学期望.

分析 (1)利用相互独立事件的概率计算公式即可得出.
(2)利用相互独立事件与互斥事件的概率计算公式即可得出.

解答 解:(1)M与B1,B2,B3进行对抗赛获胜的事件分别为A,B,C,M至少获胜两场的事件为D,
则$P(A)=\frac{3}{4},P(B)=\frac{2}{3},P(C)=\frac{1}{2}$,由于事件A,B,C相互独立,
所以$P(D)=P(ABC)+P(AB\overline C)+P(A\overline BC)+P(\overline ABC)=\frac{3}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{1}{3}×\frac{1}{2}$$+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}=\frac{17}{24}$,
由于$\frac{17}{24}$$>\frac{7}{10}$,所以M会入选最终的名单.
(2)M获胜场数X的可能取值为0,1,2,3,则$P(x=0)=\frac{1}{4}×\frac{1}{3}×\frac{1}{2}=\frac{1}{24}$,$P(x=1)=\frac{3}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}=\frac{6}{24}$,
$P(x=2)=\frac{3}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}=\frac{11}{24}$,$P(x=0)=\frac{3}{4}×\frac{2}{3}×\frac{1}{2}=\frac{6}{24}$.

X0123
P$\frac{1}{24}$$\frac{6}{24}$$\frac{11}{24}$$\frac{6}{24}$
数学期望$E(X)=0×\frac{1}{24}+1×\frac{6}{24}+2×\frac{11}{24}+3×\frac{6}{24}=\frac{23}{12}$.

点评 本题考查了随机变量的概率分布列及其数学期望、相互独立与互斥事件的概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为$\frac{6}{7}$,则口袋中白球的个数为(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“△OAB的面积为$\frac{1}{2}$”是“k=1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(Ⅰ)当a=1时,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)当a>0时,试讨论函数g(x)的单调性;
(Ⅲ)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2)(x1<x2),证明:$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=2,a2=3,且an+1=2an+3an-1(n≥2).
(1)设bn=an+1+an,证明{bn}是等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设计一个程序,求一个数x的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设等比数列{an}的前n项和为Sn,S4=1,S8=17,则首项a1=$\frac{1}{15}$或-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数$\frac{1+2i}{2-i}$化简是(  )
A.$\frac{3i}{5}$B.$-\frac{3i}{5}$C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为$10\sqrt{6}$m(如图所示),则旗杆的高度为(  )
A.10mB.30mC.10mD.10m

查看答案和解析>>

同步练习册答案