分析 (1)利用相互独立事件概率乘法公式能求出选手获得5个学豆的概率.
(2)设甲“第一关闯关成功且所得学豆为零”为事件A,“第一关闯关成功第二关闯关失败”为事件A1,“前两关闯关成功第三关闯关失败”为事件A2,则A1,A2互斥,由此能求出选手甲第一关闯关成功且所得学豆为零的概率.
解答 解:(1)选手获得5个学豆的概率$P(X=5)=\frac{3}{4}×\frac{1}{2}=\frac{3}{8}$
(2)设甲“第一关闯关成功且所得学豆为零”为事件A,
“第一关闯关成功第二关闯关失败”为事件A1,
“前两关闯关成功第三关闯关失败”为事件A2,则A1,A2互斥,
$P({A_1})=\frac{3}{4}×\frac{1}{2}×(1-\frac{2}{3})=\frac{1}{8}$,$P({A_2})=\frac{3}{4}×\frac{1}{2}×\frac{2}{3}×\frac{1}{2}×(1-\frac{1}{2})=\frac{1}{16}$,
∴选手甲第一关闯关成功且所得学豆为零的概率$P(A)=P({A_1})+P({A_2})=\frac{1}{8}+\frac{1}{16}=\frac{3}{16}$
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{4}$) | B. | [$\frac{1}{4}$,1) | C. | ($\frac{1}{16}$,1) | D. | [$\frac{1}{16}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a1+a8=a4+a5 | B. | a1+a8<a4+a5 | ||
C. | a1+a8>a4+a5 | D. | a1+a8与a4+a5大小关系不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com