精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=cosx+$\frac{1}{2}$x,x∈(0,π),则f(x)的单调减区间为[$\frac{π}{6}$,$\frac{5π}{6}$].

分析 根据导数和函数的单调性关系,以及三角形函数的图象和性质,即可求出.

解答 解:∵f(x)=cosx+$\frac{1}{2}$x,x∈(0,π),
∴f′(x)=-sinx+$\frac{1}{2}$,x∈(0,π),
当f′(x)≤0时,函数f(x)单调递减,
∴-sinx+$\frac{1}{2}$≤0,
即sinx≥$\frac{1}{2}$,
∵x∈(0,π),
∴$\frac{π}{6}$≤x≤$\frac{5π}{6}$,
∴故f(x)的单调减区间为[$\frac{π}{6}$,$\frac{5π}{6}$],
故答案为:[$\frac{π}{6}$,$\frac{5π}{6}$].

点评 本题考查导数和函数的单调性关系,关键是掌握三角形函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设点F为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,直线l过原点且与双曲线C相交于A,B两点,若双曲线C的右顶点M恰为△ABF的重心,则双曲线C的离心率为(  )
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的三个顶点的直角坐标分别为A(2,-1),B(0,0),C(2+m,-2),且∠BAC为钝角,则实数m的取值范围为(-$\frac{1}{2}$,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.sin120°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某企业有3个分厂生产同一种产品,第1、2、3分厂的产量之比为2:3:5,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的产品中共抽取200件作样本,则从第2分厂抽取的产品的数量为60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z1=1-3i,z2=3+2i,则z1+z2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0,x∈R)的最小正周期为π.
(1)求ω的值;
(2)若0<α<$\frac{π}{3}$,f($\frac{α}{2}$)=$\frac{4}{5}$,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面给出了关于复数的三种类比推理:正确的是(  )
①复数的乘法运算法则可以类比多项式的乘法运算法则;
②由向量$\overrightarrow{a}$的性质|$\overrightarrow{a}$|${\;}^{2}={\overrightarrow{a}}^{2}$可以类比复数的性质|z|2=z2
③由向量加法的几何意义可以类比得到复数加法的几何意义.
A.①③B.①②C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{m}$=(-5,3),$\overrightarrow{n}$=(-1,2)且λ$\overrightarrow{m}+\overrightarrow{n}$与2$\overrightarrow{n}$+$\overrightarrow{m}$互相垂直,则实数λ的值等于(  )
A.$\frac{3}{8}$B.-$\frac{3}{8}$C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

同步练习册答案