精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分.
(1)证明:AE是圆的切线;
(2)如果,求CD.
(1)证明过程详见解析;(2).

试题分析:本题主要考查三角形相似、内错角相等、弦切角相等、切割线定理等基础知识,考查学生的逻辑推理能力、转化能力.第一问,连结OA,利用OA,OD都是半径,得∠OAD=∠ODA,利用传递性∠ODA=∠ADE,得∠ADE=∠OAD,利用内错角相等,得OA∥CE,所以,所以AE为圆O的切线;第二问,利用第一问的分析得△ADE∽△BDA,所以,即BD=2AD,所以在中,得,利用弦切角相等得,在中,求出DE的长,再利用切割线定理得CD的长.
(1)连结OA,则OA=OD,所以∠OAD=∠ODA,
又∠ODA=∠ADE,所以∠ADE=∠OAD,所以OA∥CE.
因为AE⊥CE,所以OA⊥AE.
所以AE是⊙O的切线.          5分

(2)由(1)可得△ADE∽△BDA,
所以,即,则BD=2AD,
所以∠ABD=30°,从而∠DAE=30°,
所以DE=AEtan30°=
由切割线定理,得AE2=ED·EC,
所以,所以.      10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,∠BAC=90°,AE=AC,BD=AB,点F在BC上,且CF=BC.求证:

(1)EF⊥BC;
(2)∠ADE=∠EBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,分别为的边上的点,且不与的顶点重合。已知的长为,AC的长为n,的长是关于的方程的两个根。

(1)证明:四点共圆;
(2)若,且,求所在圆的半径。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),点A为左顶点,点B为上顶点,直线AB的斜率为
3
2
,又直线y=k(x-1)经过椭圆C的一个焦点且与其相交于点M,N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)将|MN|表示为k的函数;
(Ⅲ)线段MN的垂直平分线与x轴相交于点P,又点Q(1,0),求证:
|PQ|
|MN|
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以Rt⊿ABC的直角边AB为直径作圆O,圆O与斜边AC交于D,过D作圆O的切线与BC交于E,若BC=6,AB=8,则OE=      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是的内接三角形,PA是圆O的切线,切点为A,PB交AC于点E,交圆O于点D,PA=PE,,PD=1,DB=8.

(1)求的面积;
(2)求弦AC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2013•重庆)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为 _________ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,求圆O的面积.

查看答案和解析>>

同步练习册答案