精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)若有两个大于的零点,求的取值范围.

【答案】1递减,在递增;(2

【解析】

1)求出函数的导数,通过讨论的范围求出函数的单调区间即可;
2)通过讨论的范围,结合函数的零点的个数及其范围得到关于的不等式组,求出的范围即可.

解:(1的定义域是

i)当时,递减,

ii)当时,令,解得

,解得

递减,在递增;

iii)当时,令,解得

,解得

递减,在递增;

2)由(1)可得若函数个大于的零点,则

i)当时,需,无解,

ii)当时,需,解得:

且当时,递减,

个零点,

下面证明

时,,函数递减,

时,,函数递增,

,即

递增,故个零点,

综上,的范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)用五点法作出函数在一个周期内的图象;

2)写出的单调区间;

3)写出在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 山东省《体育高考方案》于20122月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2.

)请估计一下这组数据的平均数M

)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为帮扶组,试求选出的两人为帮扶组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上递增,在上递减,求实数的值.

2)讨论上的单调性;

3)若方程有两个不等实数根,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为.

(1)若函数时有极值,求的解析式;

(2)函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽炫图”(以弦为边长得到的正方形组成).类比“赵爽弦图”,可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设若在大等边三角形中随机取一点则此点取自小等边三角形的概率是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级共有学生名,为了解学生某次月考的情况,抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,绘制出如下尚未完成的频率分布表:

分组

频数

频率

(1)补充完整题中的频率分布表;

(2)若成绩在为优秀,估计该校高三年级学生在这次月考中,成绩优秀的学生约为多少人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村电费收取有以下两种方案供农户选择:

方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取:

方案二:不收取管理费,每度0.58元.

1)求方案一的收费Lx)(元)与用电量x(度)间的函数关系.若老王家九月份按方案一缴费35元,问老王家该月用电多少度?

2)老王家该月用电量在什么范围内,选择方案一比选择方案二好?

查看答案和解析>>

同步练习册答案