【题目】在四棱锥中,平面ABCD,是正三角形,AC与BD的交点为M,又,,点N是CD中点.
(1)求证:平面PAD;
(2)求点M到平面PBC的距离.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的两焦点与短轴两端点围成面积为12的正方形.
(1)求椭圆C的标准方程;
(2)我们称圆心在椭圆上运动,半径为的圆是椭圆的“卫星圆”.过原点O作椭圆C的“卫星圆”的两条切线,分别交椭圆C于A、B两点,若直线、的斜率为、,当时,求此时“卫星圆”的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,平面,垂足为H,给出下面结论:
①直线与该正方体各棱所成角相等;
②直线与该正方体各面所成角相等;
③过直线的平面截该正方体所得截面为平行四边形;
④垂直于直线的平面截该正方体,所得截面可能为五边形,
其中正确结论的序号为( )
A. ①③ B. ②④ C. ①②④ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆的右焦点,点,分别是轴,轴上的动点,且满足.若点满足(为坐标原点).
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于,两点,直线,与直线分别交于点,,试判断以线段为直径的圆是否经过点?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com