【题目】日前,扬州下达了2018年城市建设和环境提升重点工程项目计划,其中将对一块以O为圆心,R(R为常数,单位:米)为半径的半圆形荒地进行治理改造,如图所示,△OBD区域用于儿童乐园出租,弓形BCD区域(阴影部分)种植草坪,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S弓=f(θ);
(2)如果市规划局邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.
【答案】(1)见解析;(2)当园林公司把扇形的圆心角设计成时,总利润取最大值R2(50π).
【解析】分析:根据弓形的面积等于扇形的面积减去三角形的面积,即可求解弓形的面积;
(2)由题意列出函数的关系式,利用导数判断函数的单调性,即可求解最大值.
详解:(1)S扇=R2θ,S△OBD=R2sinθ,
S弓=f(θ)=R2(θ﹣sinθ),θ∈(0,π)
(2)设总利润为y元,儿童乐园利润为y1元,种植草坪成本为y2元,种植观赏植物成本为y3元;
则y1=R2sinθ95,y2=R2(θ﹣sinθ)5,y3=R2(π﹣θ)55,
∴y=y1﹣y2﹣y3=R2(100sinθ+50θ﹣55π),
设g(θ)=100sinθ+50θ﹣55π,θ∈(0,π).
∴g′(θ)=100cosθ+50
∴g′(θ)<0,cosθ>﹣,g(θ)在θ∈(0,)上为减函数;
g′(θ)>0,cosθ<﹣,g(θ)在θ∈(,π)上为增函数;
当θ=时,g(θ)取到最大值,此时总利润最大,
此时总利润最大:y=R2(100sinθ+50θ﹣55π)=R2(50﹣π).
(求最值时,如不交代单调性或者列表,扣2分)
答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值R2(50﹣π)
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x∈(-1,1)),有下列结论:
(1)x∈(-1,1),等式f(-x)+f(x)=0恒成立;
(2)m∈[0,+∞),方程|f(x)|=m有两个不等实数根;
(3)x1,x2∈(-1,1),若x1≠x2,则一定有f(x1)≠f(x2);
(4)存在无数多个实数k,使得函数g(x)=f(x)-kx在(-1,1)上有三个零点
则其中正确结论的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|m﹣1≤x≤m+1,x∈R,m∈R}
(1)若A∩B=[1,3],求实数m的值;
(2)若ARB,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为,点的坐标为.
(1)求过点且与圆相切的直线方程;
(2)过点任作一条直线与圆交于不同两点,,且圆交轴正半轴于点,求证:直线与的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左右焦点分别为, ,左顶点为,上顶点为, 的面积为.
(1)求椭圆的方程;
(2)设直线: 与椭圆相交于不同的两点, , 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的奇数项成等差数列,偶数项成等比数列,且公差和公比都是2,若对满足m+n≤5的任意正整数m,n,均有am+an=am+n成立. (I)求数列{an}的通项公式;
(II)若bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com